Physio-biochemical responses of polyembryonic mango (Mangifera indica L.) genotypes to varying levels of salinity stress
DOI:
https://doi.org/10.24154/jhs.v18i1.2158Keywords:
Antioxidant enzymes, lipid peroxidation, proline, RWC, salinity toleranceAbstract
Mango genotypes that are salinity tolerant can possibly be used as clonal rootstock for sustained production of salinity sensitive commercial mango cultivars in salt affected soils. Present study was carried out to elucidate the effect of salinity stress induced by salts of NaCl+CaCl2 (1:1) at concentrations of 0, 25, 50 and 100 mM on fifteen polyembryonic mango genotypes. The physio-biochemical parameters such as relative water content, chlorophyll content, epicuticular wax content, water potential (Ψ), carbohydrate content, lipid peroxidation, proline accumulation and antioxidant enzymes were determined at each level of salinity in all genotypes. On the basis of these physio-biochemical changes, the study illustrated that the polyembryonic genotypes, Turpentine, Deorakhio, Olour, Bappakkai, Vattam, Nekkare, Kurukkan, Kensington, Muvandan, EC-95862, Manipur, Sabre, Vellaikolamban, Kitchener and Mylepelian were in the decreasing order in response to salinity stress tolerance.
References
Abd-Allatif, A.M., El Kheshin M.A., Rashedy, A. A. 2015. Antioxidant potential of some mango (Mangifera indica L.) cultivars growing under salinity stress. Egypt J. Hortic., 42(2): 654-665. DOI: https://doi.org/10.21608/ejoh.2015.1330
Anonymous. 2015. CSSRI Vision 2050, Indian Council of Agricultural Research (ICAR)- Central Soil Salinity Research Institute (CSSRI), Karnal-132001, India, pp. 1-48.
Barrs, H. D. and Wheatherl, P. E. 1962. A re- examination of relative turgidity for estimating water deficit in leaves. Aust. J. Biol. Sci., 15: 413-428. DOI: https://doi.org/10.1071/BI9620413
Bates, L.S., Waldren, R. P. and Teare, I.D. 1973. Rapid determination of free proline for water- stress studies. Plant Soil., 39: 205-207. DOI: https://doi.org/10.1007/BF00018060
Chander, S. 1990. Enzymatic associations with resistance to rust and powdery mildew in peas. Indian J. Hortic., 47: 341-345.
Dayal, V., Dubey, A. K., Awasthi, O. P., Pandey R. and Dahuja, A. 2014. Growth, lipid per oxidation, antioxidant enzymes and nutrient accumulation in Amrapali mango (Mangifera indica L.) grafted on different rootstocks under NaCl stress. Plant Know J., 3(1):15-22.
Du, Z. and Bramlage, W. J. 1994. SOD activities in senescing apple fruit (Malus domestica Borkh.). J. of Food Sci., 59: 581-584. DOI: https://doi.org/10.1111/j.1365-2621.1994.tb05567.x
Ebercon, A., Blue, A. and Jorden, W. 1977. A rapid colourimetric method for epicuticular wax content of sorghum leaves. Crop Sci., 17: 179-180. DOI: https://doi.org/10.2135/cropsci1977.0011183X001700010047x
Fozouni, M., Abbaspou, N. D. and Baneh, H. 2012. Leaf water potential, photosynthetic pigments and compatible solutes alterations in four grape cultivars under salinity. Vitis., 51(4): 147-152.
Gora, J. S., Singh, V. K., Sarolia, D., Kamlesh, K., Rajkumar and Bhati, V. 2017. Performance of Mango (Mangifera indica L.) monoembryonic and polyembryonic seedlings under salt stress condition. Int. J. Curr. Microbiol. Appl. Sci., 6(6): 3051-3056. DOI: https://doi.org/10.20546/ijcmas.2017.606.363
Gunes, A., Inal, A., Bagci, E.G. and Pilbeam, D.J. 2007. Silicon-mediated changes of some physiological and enzymatic parameters symptomatic for ixidative stress in spinach and tomato grown in sodic-B toxic soil. Plant and Soil. 290: 103-114. DOI: https://doi.org/10.1007/s11104-006-9137-9
Hedge, J. E. and Hofreiter, B.T. 1962. In Book: Carbohydrate Chemistry, 17 (Eds. Whistler R.L. and Be Miller, J.N.), Academic Press, New York.
Heath, R. L. and Packer, L. 1968. Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidation. Arch. Biochem. Biophys., 125: 189-198. DOI: https://doi.org/10.1016/0003-9861(68)90654-1
Hiscox, J. D. and Isrealstam, G.F. 1979 A method for the extraction of chlorophyll from leaf tissue without maceration. Can. J. Bot., 57: 1332- 1334. DOI: https://doi.org/10.1139/b79-163
Lata, K., Srivastav, M., Dubey, A.K., Singh, A.K. and Sairam, R.K. 2011. Effect of polyamines on seedlings of two mango (Mangifera indica L.) rootstocks under salt stress. Indian J. Plant Physiol., 16(3-4): 258-267.
Laxman, R. H., Rao, N. K., Biradar, G., Sunoj, V. S. J., Shivashankara, K. S., Pavithra, C.B., Dhanyalakshmi, K. H., Manasa, K. M., Bhatt, R. M., Sadashiva, A. T. and Christopher, M. G. 2014. Antioxidant enzymes activity and physiological response of tomato (Lycopersicon esculentum M.) genotypes under mild temperature stress. Indian J. Plant Physiol., 19(2): 161-164. DOI: https://doi.org/10.1007/s40502-014-0091-x
Mansour, A. M., Jennifer, R. W. and Robert, S. H. 2007. The impact of epicuticular wax on gas exchange and photoinhibition in Leucadendron lanigerum, Proteaceae. Acta Ecol., 31: 93-101. DOI: https://doi.org/10.1016/j.actao.2006.10.005
Masia, A. 1998. SOD and CAT activities in apple during ripening and post-harvest and with special reference to ethylene. Physiol. Plant., 104: 668-672. DOI: https://doi.org/10.1034/j.1399-3054.1998.1040421.x
Pandey, P., Singh, A. K., Dubey, A.K. and Dahuja, A. 2014. Biochemical and salt ion uptake responses of seven mango (Mangifera indica L.) rootstocks to NaCl stress. J. Hortic. Sci. Biotech., 89(4): 367-372. DOI: https://doi.org/10.1080/14620316.2014.11513094
Patel, S.K., Dubey, A. K., Srivastav, M., Singh, A. K., Dahuja A. and Pandey R. N. 2011. Effect of NaCl in the irrigation water on growth, anti- oxidant enzyme activities, and nutrient uptake in five citrus rootstocks. J. Hortic. Sci. Biotech., 86(2): 189-195. DOI: https://doi.org/10.1080/14620316.2011.11512746
Rahnama, H. and Ebrahimzadeh, H. 2005. The effect of NaCl on antioxidant enzyme activities in potato seedlings. Biol. Plant., 49(1): 93-97. DOI: https://doi.org/10.1007/s10535-005-3097-4
Selvaraj, Y. and Kumar, R. 1995. Enzymatic regulation in ripening mango fruit. Indian J. Hortic., 51: 316-323.
Shar ma, S. S. and Dietz, K. J. 2006. T he significance of amino acids and amino acid- derived molecules in plant responses and adaptation to heavy metal stress. J. Exp. Bot., 57: 711-726. DOI: https://doi.org/10.1093/jxb/erj073
Singh, S. K., Sharma, H. C., Goswami, A. M., Datta, S. P. and Singh, S. P. 2000. In vitro growth and leaf composition of grapevine cultivars as affected by sodium chloride. Biol. Plant., 43: 283-286. DOI: https://doi.org/10.1023/A:1002720714781
Srivastav, M., Dubey, A.K., Pandey, R.N. and Deshmukh, P.S. 2007. Effect of soil salinity on survival, growth and chlorophyll contents of ‘Kurukkan’ mango (Mangifera indica). Indian J. Agric. Sci., 77: 685-688.
Tayebimeigooni, A., Yahya, A., Maziah, M., Ahmad, S. and Zakaria, W. 2012. Leaf water status, proline content, lipid peroxidation and accumulation of hydrogen peroxide in salinized chinese kale (Brassica alboglabra). J. Food Agric. Environ., 10(2): 371-374.
Downloads
Published
Issue
Section
License
Copyright (c) 2023 P K Nimbolkar, M R Kurian , K K Upreti , R H Laxman , K S Shivashankara , L R Varalakshmi
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Authors retain copyright. Articles published are made available as open access articles, distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original author and source are credited.
This journal permits and encourages authors to share their submitted versions (preprints), accepted versions (postprints) and/or published versions (publisher versions) freely under the CC BY-NC-SA 4.0 license while providing bibliographic details that credit, if applicable.