Understanding heat tolerance in vegetables: Physiological and molecular insights, and contemporary genomic approaches for enhancing heat stress resilience

Authors

  • Nusrat Parveen Vegetable Research Institute, Faisalabad, Punjab, Pakistan Author
  • A H Khan Horticultural Research Institute, NARC, Islamabad, Pakistan Author
  • M Tahir Vegetable Research Institute, Faisalabad, Punjab, Pakistan Author
  • R Aslam Vegetable Research Institute, Faisalabad, Punjab, Pakistan Author
  • E Amin Vegetable Research Institute, Faisalabad, Punjab, Pakistan Author
  • M Riaz Wheat Research Institute, Ayub Agriculture Research Institute, Faisalabad, Pakistan Author
  • S Aleem Barani Agriculture Research Station, Fatehjang, Punjab, Pakistan Author
  • I Ghafoor Wheat Research Institute, Ayub Agriculture Research Institute, Faisalabad, Pakistan Author
  • S Akbar Vegetable Research Institute, Faisalabad, Punjab, Pakistan Author

DOI:

https://doi.org/10.24154/jhs.v18i2.1672

Keywords:

Abiotic stress, climate change, genome editing, genomics, heat tolerance

Abstract

The increasing threat of heat stress in agriculture, fueled by the relentless rise in global temperatures, presents a formidable challenge for vegetable crops. High-temperature stress instigates intricate morphological, anatomical, and physiological changes in vegetables, resulting in a noticeable decline in yield and an overall compromise in quality. Mitigating these challenges necessitates the imperative development of heat-tolerant vegetable varieties, underscoring the need for a nuanced understanding of crop responses to the rigors of high-temperature stress. This comprehensive review systematically explores the multifaceted impacts of heat stress on vegetable crops, spanning morphological traits, physiological processes, and molecular dynamics. Beyond the identification of challenges, the review explores into the intricate adaptive mechanisms employed by vegetables to counteract the stresses imposed by elevated temperatures, besides exploring in detailed how these crops navigate and respond to the physiological disruptions caused by heat stress. Further, it also assesses the efficacy of diverse genomic approaches in the development of heat-tolerant vegetable varieties. In addition, the review explores genomic tools such as genomic selection, transgenic approaches, and genome editing technologies, which hold promise in expediting the development of vegetable varieties endowed with enhanced thermo-tolerance and heightened productivity. By synthesizing insights from diverse scientific realms, the review aspires to provide a comprehensive and integrative perspective on mitigating the adverse impacts of heat stress on vegetable crops, paving the way for sustainable agricultural practices in the face of escalating global temperatures.

References

Adlak, T., Tiwari, S., Tripathi, M., Gupta, N., Sahu, V. K., Bhawar, P., & Kandalkar, V. (2019). Biotechnology: An advanced tool for crop improvement. Current Journal of Applied Science and Technology, 33(1), 1-11. https://doi.org/10.9734/cjast/2019/v33i130081

Aien, A., Khetarpal, S., & Pal, M. (2011). Photosynthetic characteristics of potato cultivars grown under high temperature. American-Eurasian Journal of Agricultural and Environmental Sciences, 11(5), 633-639.

Alsamir, M., Mahmood, T., Trethowan, R., & Ahmad, N. (2021). An overview of heat stress in tomato (Solanum lycopersicum L.). Saudi Journal of Biological Sciences, 28(3), 1654-1663. doi: 10.1016/j.sjbs.2020.11.088.

Bassi, F. M., Bentley, A. R., Charmet, G., Ortiz, R., & Crossa, J. (2016). Breeding schemes for the implementation of genomic selection in wheat (Triticum spp.). Plant Science, 242, 23-36. https://doi.org/10.1016/j.plantsci.2015.08.021

Benites, F. R. G., & Pinto, C. A. B. P. (2011). Genetic gains for heat tolerance in potato in three cycles of recurrent selection. Crop Breeding and Applied Biotechnology, 11(11), 133-140. doi: 10.1590/S1984-70332011000200005

Besma, B. D., & Mounir, D. (2010). Salt stress induced changes in germination, sugars, starch and enzyme of carbohydrate metabolism in Abelmoschus esculentus (L.) Moench seeds. African Journal of Agricultural Research, 5(6), 408-415.

Bhat, J. A., Ali, S., Salgotra, R. K., Mir, Z. A., Dutta, S., Jadon, V., Tyagi, A., Mushtaq, M., Jain, N., & Singh, P. K. (2016). Genomic selection in the era of next-generation sequencing for complex traits in plant breeding. Frontiers in Genetics, 27(7). https://doi.org/10.3389/fgene.2016.00221

Blair, M. W., Giraldo, M., Buendia, H., Tovar, E., Duque, M., & Beebe, S. E. (2006). Microsatellite marker diversity in common bean (Phaseolus vulgaris L.). Theoretical and Applied Genetics, 113(1), 100-109. doi: 10.1007/s00122-006-0276-4

Branham, S. E., Stansell, Z. J., Couillard, D. M., & Farnham, M. W. (2017). Quantitative trait loci mapping of heat tolerance in broccoli (Brassica oleracea var. italica) using genotyping-by-sequencing. Theoretical and Applied Genetics, 130(3), 529-538. doi: 10.1007/s00122-016-2832-x

Chaudhary, S., Devi, P., Hanumantha Rao, B., Jha, U.C., Sharma, K.D., Prasad, P.V., Kumar, S., Siddique, K.H., & Nayyar, H. (2022). Physiological and molecular approaches for developing thermotolerance in vegetable crops: A growth, yield and sustenance perspective. Frontiers in Plant Science, 13, 878498. https://doi.org/10.3389/fpls.2022.878498

Chitwood, J. (2016). Spinach (Spinacia oleracea L.) seed germination and whole plant growth response to heat stress and association mapping of bolting, tallness and erectness for use in spinach breeding. Graduate Theses and Dissertations. Retrieved from https://scholarworks.uark.edu/etd/1547

Choudhury, S., Panda, P., Sahoo, L., & Panda, S.K. (2013). Reactive oxygen species signaling in plants under abiotic stress. Plant Signaling & Behavior, 8(4), e23681. doi: 10.4161/psb.23681

Devi, R., Chauhan, S., & Dhillon, T.S. (2022). Genome editing for vegetable crop improvement: Challenges and future prospects. Frontiers in Genetics, 13, 1037091. https://doi.org/10.3389/fgene.2022.1037091

Devireddy, A.R., Tschaplinski, T.J., Tuskan, G.A., Muchero, W., & Chen, J.G. (2021). Role of reactive oxygen species and hormones in plant responses to temperature changes. International Journal of Molecular Sciences, 22(16), 8843. https://doi.org/10.3390/ijms22168843

Dou, H., Xv, K., Meng, Q., Li, G., & Yang, X. (2015). Potato plants ectopically expressing Arabidopsis thaliana CBF3 exhibit enhanced tolerance to high-temperature stress. Plant, Cell & Environment, 38(1): 61-72. doi: 10.1111/pce.12366.

Ehlers, J., Hall, A., Patel, P., Roberts, P., & Matthews, W. (2000). Registration of California Blackeye 27 'Cowpea. Crop Science, 40(3), 854-854.

Erickson, A. N., & Markhart, A. H. (2001). Flower production, fruit set, and physiology of bell pepper during elevated temperature and vapor pressure deficit. Journal of the American Society for Horticultural Science, 126(6), 697-702. https://doi.org/10.21273/JASHS.126.6.697

Figueiredo, I.C.R.d., Pinto, C.A.B.P., Ribeiro, G.H.M.R., Lino, L.d.O., Lyra, D.H., & Moreira, C.M. (2015). Efficiency of selection in early generations of potato families with a view toward heat tolerance. Crop Breeding and Applied Biotechnology, 15(4), 210-217. doi: 10.1590/1984-70332015v15n4a37

Foolad, M.R., & Panthee, D.R. (2012). Marker-assisted selection in tomato breeding. Critical Reviews in Plant Sciences, 31(2), 93-123. doi: 10.1080/07352689.2011.616057

Foolad, M.R., Merk, H.L., & Ashrafi, H. (2008). Genetics, genomics and breeding of late blight and early blight resistance in tomato. Critical Reviews in Plant Sciences, 27(2), 75-107. doi: 10.1080/07352680802147353

Galsurker, O., Doron-Faigenboim, A., Teper-Bamnolker, P., Daus, A., Lers, A., & Eshel, D. (2018). Differential response to heat stress in outer and inner onion bulb scales. Journal of Experimental Botany, 69(16), 4047-4064. doi: 10.1093/jxb/ery189

Gangadhar, B. H., Sajeesh, K., Venkatesh, J., Baskar, V., Abhinandan, K., Yu, J. W., Prasad, R., & Mishra, R. K. (2016). Enhanced tolerance of transgenic potato plants over-expressing non-specific lipid transfer protein-1 (StnsLTP1) against multiple abiotic stresses. Frontiers in Plant Science, 7, 1228. doi: 10.3389/fpls.2016.01228

Gao, F., Katz, L.A., & Song, W. (2012). Insights into the phylogenetic and taxonomy of philasterid ciliates (Protozoa, Ciliophora, Scuticociliatia) based on analyses of multiple molecular markers. Molecular Phylogenetics and Evolution, 64(2), 308-317. https://doi.org/10.1016/j.ympev.2012.04.008

Gardner, R. (2000). 'Sun Leaper,' a hybrid tomato, and its parent, Nc HS-1. HortScience, 35(5), 960-961.

Gaur, P.M., Samineni, S., Thudi, M., Tripathi, S., Sajja, S.B., Jayalakshmi, V., Mannur, D.M., Vijayakumar, A.G., Ganga Rao, N.V., & Ojiewo, C. (2019). Integrated breeding approaches for improving drought and heat adaptation in chickpea (Cicer arietinum L.). Plant Breeding, 138(4), 389-400. doi: 10.1111/pbr.12641

Gerszberg, A., Hnatuszko-Konka, K. (2017). Tomato tolerance to abiotic stress: a review of most often engineered target sequences. Plant Growth Regulation, 83, 175–198. https://doi.org/10.1007/s10725-017-0251-x

Habyarimana, E., Gorthy, S., Baloch, F.S., Ercisli, S., & Chung, G. (2022). Whole-genome resequencing of Sorghum bicolor and S. bicolor × S. halepense lines provides new insights for improving plant agroecological characteristics. Scientific Reports, 12(1), 1-14. https://doi.org/10.1038/s41598-022-09433-0

Hackett, M.M., Lee, J.H., Francis, D., & Schwartz, S.J. (2004). Thermal stability and isomerization of lycopene in tomato oleoresins from different varieties. Journal of Food Science, 69, 536-541. https://doi.org/10.1111/j.1365-2621.2004.tb13647.x

Hayamanesh, S., Trethowan, R., Mahmood, T., Ahmad, N., & Keitel, C. (2023). Physiological and molecular screening of high temperature tolerance in okra (Abelmoschus esculentus (L.) Moench). Horticulturae, 9(6), 722. https://doi.org/10.3390/horticulturae9060722

Hazra, P., Samsul, H., Sikder, D., & Peter, K. (2007). Breeding tomato (Lycopersicon esculentum Mill) resistant to high-temperature stress. International Journal of Plant Breeding, 1(1), 31-40.

Hu, X., Wu, L., Zhao, F., Zhang, D., Li, N., Zhu, G., Li, C., & Wang, W. (2015). Phosphoproteomic analysis of the response of maize leaves to drought, heat and their combination stress. Frontiers in Plant Science, 6(298). https://doi.org/10.3389/fpls.2015.00298

Huang, S., Li, R., Zhang, Z., Li, L., Gu, X., Fan, W., Lucas, W.J., Wang, X., Xie, B., & Ni, P. (2009). The genome of the cucumber, Cucumis sativus L. Nature Genetics, 41(12), 1275-1281. doi: 10.1038/ng.475.

Ilić, S., Milenković, L., Dimitrijević, A., Stanojević, L., Cvetković, D., Kevrešan, Ž., Fallik, E., & Mastilović, J. (2017). Light modification by color nets improves the quality of lettuce from summer production. Scientia Horticulturae, 226, 389-397. https://doi.org/10.1016/j.

IPCC. (2023). Summary for Policymakers. In: Climate Change 2023: Synthesis report. Contribution of working groups I, II, and III to the sixth assessment report of the intergovernmental panel on climate change [Core Writing Team, H. Lee, and J. Romero (eds.)]. IPCC, Geneva, Switzerland, pp. 1-34. doi: 10.59327/IPCC/AR6-9789291691647.001

Iwaki, T., Guo, L., Ryals, J.A., Yasuda, S., Shimazaki, T., Kikuchi, A., Watanabe, K.N., Kasuga, M., Yamaguchi-Shinozaki, K., & Ogawa, T. (2013). Metabolic profiling of transgenic potato tubers expressing Arabidopsis dehydration response element-binding protein 1A (DREB1A). Journal of Agricultural and Food Chemistry, 61(4), 893-900. https://doi.org/10.1021/jf304071n

Iwama, K. (2008). Physiology of the potato: new insights into the root system and repercussions for crop management. Potato Research, 51(3), 333-353. https://doi.org/10.1007/s11540-008-9120-3

Jacob, P., Hirt, H., & Bendahmane, A. (2017). The heat‐shock protein/chaperone network and multiple stress resistance. Plant Biotechnology Journal, 15(4), 405-414. doi: 10.1111/pbi.12659

Kałużewicz, A., Gliszczyńska-Świgło, A., Klimczak, I., Lisiecka, J., Tyrakowska, B., & Knaflewski, M. (2012). The influence of short-term storage on the content of flavonoids and vitamin C in broccoli. European Journal of Horticultural Science, 77, 137-143.

Kim, E.J., Kang, K.H., & Ju, J.H. (2017). CRISPR-Cas9: a promising tool for gene editing on induced pluripotent stem cells. The Korean Journal of Internal Medicine, 32(1), 42-61. doi: 10.3904/kjim.2016.198

Kim, M. D., Kim, Y. H., Kwon, S. Y., Yun, D. J., Kwak, S. S., & Lee, H. S. (2010). Enhanced tolerance to methyl viologen-induced oxidative stress and high temperature in transgenic potato plants overexpressing the CuZnSOD, APX, and NDPK2 genes. Physiologia Plantarum, 140, 153-162. https://doi.org/10.1111/j.1399-3054.2010.01392.x

Kobayashi, A., Mukoujima, N., Tsuda, S., Mori, M., Ohara-Takada, A., & Takada, N. (2009). A new potato genotype, “Haruka”, improved for culinary quality and disease resistance. Breeding Science, 59(3), 309-313.

Kumar, M., Prusty, M.R., Pandey, M.K., Sing, P.K., Bohra, A., Guo, B., & Varshney, R.K. (2023). Application of CRISPR/Cas9-mediated gene editing for abiotic stress management in crop plants. Frontiers in Plant Science, 14, 1157678. https://doi.org/10.3389/fpls.2023.1157678

Kumar, R., Solankey, S.S., & Singh, M. (2012). Breeding for drought tolerance in vegetables. Vegetable Science, 39, 1-15.

Kurtar, E.S. (2010). Modelling the effect of temperature on seed germination in some cucurbits. African Journal of Biotechnology, 9(9). doi: 10.5897/AJB2010.000-3016

Kurtar, E.S., & Balkaya, A. (2010). Production of in vitro haploid plants from in situ induced haploid embryos in winter squash (Cucurbita maxima Duchesne ex Lam.) via irradiated pollen. Plant Cell, Tissue and Organ Culture (PCTOC), 102(3), 267-277. doi: 10.1007/s11240-010-9729-1

Mathur, S., Agrawal, D., & Jajoo, A. (2014). Photosynthesis: Response to high-temperature stress. Journal of Photochemistry and Photobiology B: Biology, 137, 116–126. https://doi.org/10.1016/j.jphotobiol.2014.01.010

McCord, P.H., Sosinski, B.R., Haynes, K., Clough, M., & Yencho, G. (2011). QTL mapping of internal heat necrosis in tetraploid potato. Theoretical and Applied Genetics, 122(1), 129-142. doi: 10.1007/s00122-010-1429-z

Minhas, J., Kumar, D., Joseph, T., Raj, B.T., Khurana, S.P., Pandey, S.K., Singh, S., Singh, B., & Naik, P. (2006). Kufri Surya: A new heat-tolerant potato genotype suitable for early planting in North-western plains, peninsular India and processing into french fries and chips. Potato Journal, 33(1-2).

Mittler, R., Vanderauwera, S., Gollery, M., & Van Breusegem, F. (2004). Reactive oxygen gene network of plants. Trends in Plant Science, 9, 490–498. doi: 10.1016/j.tplants.2004.08.009

Momcilovic, I., & Ristic, Z. (2007). Expression of chloroplast protein synthesis elongation factor, EF-Tu, in two lines of maize with contrasting tolerance to heat stress during early stages of plant development. Journal of Plant Physiology, 164(1), 90-99. doi: 10.1016/j.jplph.2006.01.010.

Nascimento, W.M., Vieira, J.V., Silva, G.O., Reitsma, K.R., & Maytliffe, D.J. (2008). Carrot seed germination at high temperature: effect of genotype and association with ethylene production. HortScience, 43(5), 1538-1543. doi: 10.21273/HORTSCI.43.5.1538

Nievola, C.C., Carvalho, C.P., Carvalho, V., & Rodrigues, E. (2017). Rapid responses of plants to temperature changes. Temperature (Austin, Tex.), 4(4), 371–405. https://doi.org/10.1080/23328940.2017.1377812

Oh, S., Moon, K.H., Song, E.Y., et al. (2015). Photosynthesis of Chinese cabbage and radish in response to rising leaf temperature during spring. Horticulture, Environment, and Biotechnology, 56, 159–166. https://doi.org/10.1007/s13580-015-0122-1

Pan, C., Yang, D., Zhao, X., et al. (2019). Tomato stigma exsertion induced by high temperature is associated with the jasmonate signaling pathway. Plant, Cell & Environment, 42, 1205–1221. https://doi.org/10.1111/pce.13444

Panthee, D.R., & Gotame, T.P. (2020). Improving heat stress tolerance in tomato. CABI Reviews, https://doi.org/10.1079/PAVSNNR20201506

Pareek, A., Singla, S.L., & Grover, A. (1998). Proteins alterations associated with salinity, desiccation, high and low temperature stresses and abscisic acid application in seedlings of Pusa 169, a high-yielding rice (Oryza sativa L.) cultivar. Current Science, 1023-1035.

Parent, B., & Tardieu, F. (2012). Temperature responses of developmental processes have not been affected by breeding in different ecological areas for 17 crop species. New Phytologist, 194(3), 760-774. doi: 10.1111/j.1469-8137.2012.04086.x

Pottorff, M., Roberts, P.A., Close, T.J., Lonardi, S., Wanamaker, S., & Ehlers, J.D. (2014). Identification of candidate genes and molecular markers for heat-induced brown discoloration of seed coats in cowpea (Vigna unguiculata (L.) Walp). BMC Genomics, 15, 328. https://doi.org/10.1186/1471-2164-15-328

Ruggieri, V., Calafiore, R., Schettini, C., Rigano, M., Olivieri, F., Frusciante, L., & Barone, A. (2019). Exploiting genetic and genomic resources to enhance heat-tolerance in tomatoes. Agronomy, 9(1), 22. https://doi.org/10.3390/agronomy9010022

Sehgal, A., Sita, K., Siddique, K.H., Kumar, R., Bhogireddy, S., Varshney, R.K., Hanumantha Rao, B., Nair, R.M., Prasad, P.V., & Nayyar, H. (2018). Drought or/and heat-stress effects on seed filling in food crops: impacts on functional biochemistry, seed yields, and nutritional quality. Frontiers in Plant Science, 9(1705). https://doi.org/10.3389/fpls.2018.01705

Shamshad, M., & Sharma, A. (2018). The usage of genomic selection strategy in plant breeding. Next Generation Plant Breeding, 26, 93-108. doi: 10.5772/intechopen.76247

Singh, U., Patel, P.K., Singh, A.K., Tiwari, V., Kumar, R., Rai, N., Bahadur, A., Tiwari, A.K., Singh, M., & Singh, B. (2015). Screening of tomato genotypes under high temperature stress for reproductive traits. Vegetable Science, 42, 52-55.

Slama, I., Abdelly, C., Bouchereau, A., Flowers, T., & Savoure, A. (2015). Diversity, distribution and roles of osmoprotective compounds accumulated in halophytes under abiotic stress. Annals of Botany, 115(3), 433-447. doi: 10.1093/aob/mcu239

Snyman, M., & Cronjé, M.J. (2008). Modulation of heat shock factors accompanies salicylic acid-mediated potentiation of Hsp70 in tomato seedlings. Journal of Experimental Botany, 59(8), 2125-2132. https://doi.org/10.1093/jxb/ern075

Spindel, J., & Iwata, H. (2018). Genomic selection in rice breeding. In Rice Genomics, Genetics and Breeding (pp. 473-496). Springer. doi: 10.1007/978-981-10-7461-5_24

Stich, B., & Van Inghelandt, D. (2018). Prospects and potential uses of genomic prediction of key performance traits in tetraploid potato. Frontiers in Plant Science, 9(159). https://doi.org/10.3389/fpls.2018.00159

Suzuki, N., Rivero, R.M., Shulaev, V., Blumwald, E., & Mittler, R. (2014). Abiotic and biotic stress combinations. New Phytologist, 203(1), 32-43. https://doi.org/10.1111/nph.12797

Tayade, A.D., Motagi, B.N., Jadhav, M.P., Nadaf, A.S., Koti, R.V., Gangurde, S.S., Sharma, V., Varshney, R.K., Pandey, M.K., & Bhat, R.S. (2022). Genetic mapping of tolerance to iron deficiency chlorosis in peanut (Arachis hypogaea L.). Euphytica, 218(4), 1-10. https://doi.org/10.21203/rs.3.rs-1211673/v1

Tayade, R., Nguyen, T., Oh, S.A., Hwang, Y.S., Yoon, I.S., Deshmuk, R., Jung, K.-H., & Park, S.K. (2018). Effective strategies for enhancing tolerance to high-temperature stress in rice during the reproductive and ripening stages. Plant Breeding and Biotechnology, 6(1), 1-18. https://doi.org/10.9787/PBB.2018.6.1.1

Tekalign, T., Abdissa, Y., & Pant, L. (2012). Growth, bulb yield and quality of onion (Allium cepa L.) as influenced by nitrogen and phosphorus fertilization on vertisol. II: Bulb quality and storability. African Journal of Agricultural Research, 7(45), 5980-5985.

Tomato Genome Consortium. (2012). The tomato genome sequence provides insights into fleshy fruit evolution. Nature, 485(7400), 635–641. https://doi.org/10.1038/nature11119

Trapero‐Mozos, A., Morris, W.L., Ducreux, L.J., McLean, K., Stephens, J., Torrance, L., Bryan, G.J., Hancock, R.D., & Taylor, M.A. (2018). Engineering heat tolerance in potato by temperature‐dependent expression of a specific allele of HEAT‐SHOCK COGNATE 70. Plant Biotechnology Journal, 16(1), 197-207. doi: 10.1111/pbi.12760.

Usman, M.G., Rafii, M.Y., Ismail, M.R., Malek, M.A., & Latif, M.A. (2015). Expression of target gene Hsp70 and membrane stability determine heat tolerance in chili pepper. Journal of the American Society for Horticultural Science, 140(2), 144-150. doi: https://doi.org/10.21273/JASHS.140.2.144

Valles-Rosales, D.J., Rodríguez-Picón, L.A., Méndez-González, L.C., del Valle-Carrasco, A., & Alodan, H. (2016). Analysis of the mechanical properties of wood-plastic composites based on agricultural chili pepper waste. Maderas. Ciencia y tecnología, 18(1), 43-54. doi: 10.4067/S0718-221X2016005000005

Velikova, V., Fares, S., & Loreto, F. (2008). Isoprene and nitric oxide reduce damages in leaves exposed to oxidative stress. Plant, Cell & Environment, 31(12), 1882-1894. https://doi.org/10.1111/j.1365-3040.2008.01893.x

Verdeprado, H., Kretzschmar, T., Begum, H., Raghavan, C., Joyce, P., Lakshmanan, P., Cobb, J.N., & Collard, B.C. (2018). Association mapping in rice: basic concepts and perspectives for molecular breeding. Plant Production Science, 21(3), 159-176. doi: 10.1080/1343943X.2018.1483205

Wahid, A., Gelani, S., Ashraf, M., & Foolad, M. R. (2007). Heat tolerance in plants: an overview. Environmental and Experimental Botany, 61, 199–223. doi: 10.1016/j.envexpbot.2007.05.011

Wang, H., Wu, Y., Zhang, Y., Yang, J., Fan, W., Zhang, H., Zhao, S., Yuan, L., & Zhang, P. (2019). CRISPR/Cas9-based mutagenesis of starch biosynthetic genes in sweet potato (Ipomoea batatas) for the improvement of starch quality. International Journal of Molecular Sciences, 20(19), 4702. doi: 10.3390/ijms20194702

Wang, X., Chen, S., Shi, X., Liu, D., Zhao, P., Lu, Y., Cheng, Y., Liu, Z., Nie, X., & Song, W. (2019). Hybrid sequencing reveals insight into heat sensing and signaling of bread wheat. The Plant Journal, 98(6), 1015-1032. doi: 10.1111/tpj.14299

Wien, H. (1997). Lettuce. The Physiology of Vegetable Crops, 479-509.

Xu, J., Wolters-Arts, M., Mariani, C., Huber, H., & Rieu, I. (2017). Heat stress affects vegetative and reproductive performance and trait correlations in tomato (Solanum lycopersicum). Euphytica, 213(7), 1-12. doi: 10.1007/s10681-017-1949-6

Yamamoto, T., Kashojiya, S., Kamimura, S., Kameyama, T., Ariizumi, T., Ezura, H., & Miura, K. (2018). Application and development of genome editing technologies to the Solanaceae plants. Plant Physiology and Biochemistry, 131, 37-46.doi: 10.1016/j.plaphy.2018.02.019

Yoong, F. Y., O'Brien, L. K., Truco, M. J., Huo, H., Sideman, R., Hayes, R., Michelmore, R.W. and Bradford, K. J. (2016). Genetic variation for thermotolerance in lettuce seed germination is associated with temperature-sensitive regulation of ethylene response factor1 (ERF1). Plant Physiology, 170(1), 472-488. doi: 10.1104/pp.15.01251.

Yu, W., Wang, L., Zhao, R., Sheng, J., Zhang, S., Li, R., & Shen, L. (2019). Knockout of SlMAPK3 enhances tolerance to heat stress involving ROS homeostasis in tomato plants. BMC Plant Biology, 19, 354. https://doi.org/10.1186/s12870-019-1939-z

Zeng, C., Jia, T., Gu, T., Su, J. & Hu, X. (2021). Progress in research on the mechanisms underlying chloroplast-involved heat tolerance in plants. Genes, 12, 1343. https://doi.org/10.3390/genes12091343

Zhuang, J., Zhang, J., Hou, X.-L., Wang, F., & Xiong, A.-S. (2014). Transcriptomic, proteomic, metabolomic and functional genomic approaches for the study of abiotic stress in vegetable crops. Critical Reviews in Plant Sciences, 33(2-3), 225-237. doi: 10.1080/07352689.2014.870420

Downloads

Published

31-12-2023

Issue

Section

Review

How to Cite

Parveen, N., Khan, A. H., Tahir, M., Aslam, R., Amin, E., Riaz, M., Aleem, S., Ghafoor, I., & Akbar, S. (2023). Understanding heat tolerance in vegetables: Physiological and molecular insights, and contemporary genomic approaches for enhancing heat stress resilience. Journal of Horticultural Sciences, 18(2). https://doi.org/10.24154/jhs.v18i2.1672

Similar Articles

1-10 of 88

You may also start an advanced similarity search for this article.