Modelling of freeze-drying kinetics of osmosed jackfruit(Artocarpus heterophyllus) bulb slices

Authors

  • K Mithun ANGRAU , Acharya N.G. Ranga Agricultural University, Guntur, Andhra Pradesh Author
  • S Kaleemullah ANGRAU , Acharya N. G. Ranga Agricultural University image/svg+xml Author

DOI:

https://doi.org/10.24154/jhs.v20i2.2821

Keywords:

Activation energy, drying characteristics, effective moisture diffusivity, freeze drying, modelling

Abstract

Osmotic freeze-drying technique was employed to produce value added snacks from jackfruits for year-round availability to the consumers. To reduce the freeze-drying time, the osmotic pretreatment was done to jackfruit bulb slices, to bring down the moisture level. The drying kinetics of osmosed jackfruit bulb slices (OJBS) in a freeze dryer (FD) were investigated at plate temperatures ranging from 20-40°C with a fixed interval of 10°C. Drying of OJBS materialized in the falling rate period of a drying rate curve. The time taken was 22, 18 and 16 h, respectively to dry the OJBS from IMC of 200% (d.b.) to FMC of 8% (d.b.) at plate temperatures of 20, 30 and 40°C. The experimental drying data was analyzed employing eight different drying models, revealing that both the Logarithmic and Verma et al. models accurately predicted the moisture ratio (MR) of OJBS at varied plate temperature in a FD. The effective moisture diffusivity (EMD) values increased from 1.3×10-10 m2s-1 to 2.3×10-10 m2s-1 with increase in the plate temperature of FD from 20°C to 40°C. The activation energy (Ea) was calculated to be 20.81 kJmol-1 and diffusion coefficient (Do) to be 6.67×10-7 m2s-1 for OJBS in a FD at plate temperatures of 20°C to 40°C.

Downloads

Download data is not yet available.

Author Biographies

  • K Mithun, ANGRAU, Acharya N.G. Ranga Agricultural University, Guntur, Andhra Pradesh

    Department of Processing and Food Engineering

    Dr NTR College of Agricultural Engineering

    Acharya N.G. Ranga Agricultural University, Guntur, Andhra Pradesh

    &

    PGIHS, SKLTSHU, Mulugu, Siddipet

     

  • S Kaleemullah, ANGRAU, Acharya N. G. Ranga Agricultural University

    Principal Scientist, Regional Agricultural Research Station, ANGRAU, Tirupati, India

References

Adiletta, G., Russo, P., Senadeera, W., & Di Matteo, M. (2016). Drying characteristics and quality of grape under physical pretreatment. Journal of Food Engineering, 172, 9–18. https://doi.org/10.1016/j.jfoodeng.2015.06.031

Aghbashlo, M., Kianmehr, M. H., & Samimi Akhijayani, H. (2008). Influence of drying conditions on the effective moisture diffusivity, energy of activation and energy consumption during the thin-layer drying of berberis fruit (Berberidaceae). Energy Conversion and Management, 49(10), 2865–2871. https://doi.org/10.1016/j.enconman.2008.03.009

Asia-Pacific Association of Agricultural Research Institutions. (2012). Jackfruit improvement in the Asia-Pacific region: A status report. APAARI. https://www.apaari.org/wp-content/uploads/downloads/2012/10/Jackfruit-A-Success-Story_31-8-2012.pdf

Arathi, S. M., & Ushadevi, K. N. (2024). Factors influencing purchase decision of jackfruit products in Thiruvananthapuram district. Asian Journal of Agricultural Extension, Economics & Sociology, 42(1), 17–23. https://doi.org/10.9734/ajaees/2024/v42i12342

Demiray, E., Seker, A., & Tulek, Y. (2017). Drying kinetics of onion (Allium cepa L.) slices with convective and microwave drying. Heat and Mass Transfer, 53, 1817–1827. https://doi.org/10.1007/s00231-016-1943-x

Domin, M., Dziki, D., Kłapsia, S., Blicharz-Kania, A., Biernacka, B., & Krzykowski, A. (2020). Influence of freeze-drying conditions on the physicochemical properties and grinding characteristics of kiwi. International Journal of Food Engineering, 16(1–2), Article 20180315. https://doi.org/10.1515/ijfe-2018-0315

Duangmal, K., Saicheua, B., & Sueeprasan, S. (2008). Colour evaluation of freeze-dried roselle extract as a natural food colorant in a model drink system. LWT – Food Science and Technology, 41(8), 1437–1445. https://doi.org/10.1016/j.lwt.2007.08.014

Food and Agriculture Organization of the United Nations. (2022). The green development of special agricultural product—Jackfruit in China. FAO. https://www.fao.org/3/cc3672en/cc3672en.pdf

Goyal, R. K., Kingsly, A. R. P., Manikantan, M. R., & Ilyas, S. M. (2006). Thin-layer drying kinetics of raw mango slices. Biosystems Engineering, 95(1), 43–49.

Guo, X., Hao, Q., Qiao, X., Li, M., Qiu, Z., Zheng, Z., & Zhang, B. (2023). Evaluation of pretreatment methods in hot-air drying of garlic: Drying characteristics, energy consumption and quality properties. LWT – Food Science and Technology, 180, Article 114685. https://doi.org/10.1016/j.lwt.2023.114685

Jorge, A. P., Ferreira Junior, W. N., Silva, L. C. D. M., de Oliveira, D. E., & Resende, O. (2021). Drying kinetics of ‘gueroba’ (Syagrus oleracea) fruit pulp. Revista Brasileira de Engenharia Agrícola e Ambiental, 25(1), 23–29. https://doi.org/10.1590/1807-1929/agriambi.v25n1p23-29

Kaleemullah, S., & Kailappan, R. (2006). Modelling of thin-layer drying kinetics of red chillies. Journal of Food Engineering, 76(4), 531–537. https://doi.org/10.1016/j.jfoodeng.2005.05.049

Kalender, M., & Topdemir, A. (2023). Investigation of thin-layer drying of micropropagated Ocimum basilicum L.: Modelling, quality characteristics and energy efficiency. Chemical Industry & Chemical Engineering Quarterly, 29(4), 299–309. https://doi.org/10.2298/CICEQ220722003K

Li, L., Zhang, M., & Wang, W. (2020). Ultrasound-assisted osmotic dehydration pretreatment before pulsed fluidized bed microwave freeze drying of Chinese yam. Food Bioscience, 35, Article 100548. https://doi.org/10.1016/j.fbio.2020.100548

Menlik, T., Özdemir, M. B., & Kirmaci, V. (2010). Determination of freeze-drying behaviors of apples by artificial neural network. Expert Systems with Applications, 37(12), 7669–7677. https://doi.org/10.1016/j.eswa.2010.04.075

Mithun, K., & Kaleemullah, S. (2019). Optimization of osmotic dewatering process parameters of jackfruit bulb slices. Journal of Pharmacognosy and Phytochemistry, 8(2), 1871–1877.

Mithun, K., Kaleemullah, S., Smith, D. D., & Raja, D. S. (2019). Studies on mass transfer parameters during osmotic dewatering of jackfruit bulb slices. International Journal of Chemical Studies, 7(2), 2006–2009.

Pandidurai, G., Amutha, S., Kanchana, S., Vellaikumar, S., & Prabhakaran, K. (2022). Optimization of freeze-drying parameters for moringa (Moringa oleifera) flower powder using response surface methodology and principal component analysis. Journal of Horticultural Sciences, 17(2), 388–396. https://doi.org/10.24154/jhs.v17i2.1481

Patel, V., Judal, K. B., Panchal, H., Gupta, N. K., Zahra, M. M. A., & Shah, M. A. (2023). Mathematical modelling and verification of open sun drying of cotton seeds. International Journal of Low-Carbon Technologies, 18, 887–895. https://doi.org/10.1093/ijlct/ctad075

Patil, R. C., & Gawande, R. R. (2018). Drying characteristics of amla candy in a solar tunnel greenhouse dryer. Journal of Food Process Engineering, Article e12824. https://doi.org/10.1111/jfpe.12824

Pei, F., Shi, Y., Mariga, A. M., Yang, W. J., Tang, X. Z., Zhao, L. Y., An, X. X., & Hu, Q. H. (2014). Comparison of freeze-drying and freeze-drying combined with microwave vacuum drying on drying kinetics and rehydration of button mushroom slices. Food and Bioprocess Technology, 7, 1629–1639. https://doi.org/10.1007/s11947-013-1199-0

Ranjith, G., Kaleemullah, S., Reddy, R., & Prabhakar, B. (2023). Optimization of osmotic dehydration in dragon fruit slices using response surface methodology. Journal of Horticultural Sciences, 18(2), 408–416. https://doi.org/10.24154/jhs.v18i2.1822

Sadaka, S. (2022). Impact of grain layer thickness on rough rice drying kinetics parameters. Case Studies in Thermal Engineering, 35, Article 102026. https://doi.org/10.1016/j.csite.2022.102026

Saxena, A., Maity, T., Raju, P. S., & Bawa, A. S. (2015). Optimization of pretreatment and quality evaluation of jackfruit bulb crisps developed using combination drying. Food and Bioproducts Processing, 95, 106–117.

Selvakumar, R., & Tiwari, R. B. (2018). Osmotic dehydration of temperate carrot (Daucus carota L.). Indian Farmer, 5(10), 1253–1259.

Senadeera, W., Adiletta, G., Önal, B., Di Matteo, M., & Russo, P. (2020). Influence of hot air drying temperature on drying kinetics, shrinkage and colour of persimmon slices. Foods, 9(1), Article 101. https://doi.org/10.3390/foods9010101

Shofian, N. M., Hamid, A. A., Osman, A., Saari, N., Anwar, F., Dek, M. S. P., & Hairuddin, M. R. (2011). Effect of freeze-drying on antioxidant compounds and antioxidant activity of selected tropical fruits. International Journal of Molecular Sciences, 12(7), 4678–4692.

Vengaiah, P. C., & Pandey, J. P. (2007). Dehydration kinetics of sweet pepper (Capsicum annuum L.). Journal of Food Engineering, 81(2), 282–286. https://doi.org/10.1016/j.jfoodeng.2006.04.053

Xu, B., Chen, J., Tiliwa, E. S., Yan, W., Azam, S. R., Yuan, J., Wei, B., Zhou, C., & Ma, H. (2021a). Effect of multi-mode dual-frequency ultrasound pretreatment on vacuum freeze drying and quality of strawberry slices. Ultrasonics Sonochemistry, 78, Article 105714. https://doi.org/10.1016/j.ultsonch.2021.105714

Xu, X., Zhang, L., Feng, Y., Zhou, C., Yagoub, A. E. A., Wahia, H., Ma, H., Zhang, J., & Sun, Y. (2021b). Ultrasound freeze–thaw pretreatment to improve vacuum freeze-drying efficiency and quality of okra. Ultrasonics Sonochemistry, 70, Article 105300. https://doi.org/10.1016/j.ultsonch.2020.105300

Downloads

Published

31-12-2025

Data Availability Statement

None

Issue

Section

Research Papers

How to Cite

Mithun, K., & Kaleemullah, S. (2025). Modelling of freeze-drying kinetics of osmosed jackfruit(Artocarpus heterophyllus) bulb slices. Journal of Horticultural Sciences, 20(2). https://doi.org/10.24154/jhs.v20i2.2821

Similar Articles

11-20 of 148

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)