Molecular Mechanisms Involved in Biosynthesis and Regulation of Carotenoids in Plants

Authors

  • P Shilpa Author
  • K V Ravishankar Author
  • K S Shivashankara Author
  • A T Sadashiva Author
  • N Sunil Kumar Author

DOI:

https://doi.org/10.24154/jhs.v11i2.78

Keywords:

Carotenoid Biosynthesis, Regulation, Plastid, Fruit, Transcription Factor

Abstract

Carotenoids are coloured compounds beneficial to plants and humans. Some of the major health benefits carotenoids provide include Vitamin A precursors and, antioxidants besides being involved in several physiological functions. Even though several carotenoids are synthesised by plants, only a few like beta/ alpha carotenes and cryptoxanthin serve as Vitamin A precursors. The rest are useful as antioxidants. To draw maximum benefits from carotenoids, we need to incorporate these in crop improvement programmes for enhancing available Vitamin A precursor carotenoids. Therefore, it is essential to study biosynthesis of carotenoids, their genetics and their control. In this review, we focus on factors regulating carotenoid biosynthesis, metabolism and storage in plastids. Transcriptional and genetic control of carotenoid production in plants is discussed in the review using several mutants too. Further, environmental regulation of carotenoid biosynthesis is also highlighted. Carotenoid-rich fruits and vegetables have greater economic value owing to their health-promoting effects. Besides,carotenoids have several industrial applications. Therefore, knowledge of regulation mechanism in carotenoid production in plants can help develop crop varieties or technologies, thus generating carotene-rich fruits and vegetables.

References

Alque-zar, B., Zacarias, L. and Rodrigo, M.J. 2009. Molecular and functional characterization of a novel chromoplast-specific lycopene b-cyclase from citrus and its relation to lycopene accumulation. J. Exptl. Bot., 60:1783-1797

Aluru, M., Xu, Y., Guo, R., Wang, Z., Li, S., White, W., Wang, K. and Rodermel, S. 2008. Generation of transgenic maize with enhanced pro-vitamin A content. J. Exptl. Bot., 59:3551-3562

Auldridge, M.E., McCarty, D.R. and Klee, H.J. 2006. Plant carotenoid cleavage oxygenases and their apocarotenoid products. Curr. Opin. Plant Biol., 9:315-321

Beisel, K.G., Jahnke, S., Hofmann, D., Koppchen, S., Schurr, U. and Matsubara, S. 2010. Continuous turnover of carotenes and chlorophyll ‘a’ in mature leaves of Arabidopsis revealed by 14CO2 pulse-chase labeling. Plant Physiol., 152:2188-2199

Beyer, P., Al-Babili, S., Ye, X., Lucca, P., Schaub, P., Welsch, R. and Potrykus, I. 2002 . Golden rice: Introducing the ß-carotene biosynthesis pathway into rice endosperm by genetic engineering to defeat Vitamin A deficiency. J. Nutrition, 132:506S-510S

Bird, C.R., Ray, J.A., Fletcher, J.D., Boniwell, J.M., Bird, A.S., Teulieres, C., Blain, I., Bramley, P.M. and Schuch, W. 1991. Using antisense RNA to study gene function: inhibition of carotenoid biosynthesis in transgenic tomatoes. BioTechnology, 9:635-639

Bramley, P.M., Teulieres, C., Blain, I., Bird, C. and Schuch, W. 1992. Biochemical characterization of transgenic tomato plants in which carotenoid synthesis has been inhibited through expression of antisense RNA to pTOM5. The Plant J., 2:343-349

Brandt, S., Pék, Z., Barna, E., Lugasi, A. and Helyes, L. 2006. Lycopene content and colour of ripening tomatoes as affected by environmental conditions. J. Sci. Food Agri., 86(4):568-572

Carol, P. and Kuntz, M. 2001. A plastid terminal oxidase comes to light: implications for carotenoid biosynthesis and chloro-respiration. Trends Plant Sci., 6:31-36

Cazzonelli, C.I., Cuttriss, A.J., Cossetto, S.B., Pye, W., Crisp, P. and Whelan, J. 2009. Regulation of carotenoid composition and shoot branching in Arabidopsis by a chromatin modifying histone methyltransferase, SDG8. Plant Cell, 21:39-53

D’Ambrosio, C., Giorio, G., Marino, I., Merendino, A., Petrozza, A., Salfi, L., Stigliani, A.L. and Cellini, F. 2004. Virtually complete conversion of lycopene into â-carotene in fruits of tomato plants transformed with the tomato lycopene â-cyclase (tlcy-b) cDNA. Plant Sci., 166:207-214

Dalal, M., Viswanathan, C. and Kailash C. Bansal. 2010. Isolation and functional characterization of lycopene â-cyclase (CYC-B) promoter from Solanum habrochaites. BMC Plant Biol., 10:61-75

Devitt, L.C., Fanning, K., Dietzgen, R.G. and Holton, T.A. 2010. Isolation and functional characterization of a lycopene b-cyclase gene that controls fruit colour of papaya (Carica papaya L.). J. Exptl. Bot., 61:33-39

Diretto, G., Al-Babili, S., Tavazz, R., Papacchioli, V., Beyer, P. and Giuliano, G. 2007. Metabolic engineering of potato carotenoid content through tuber-specific overexpression of a bacterial mini-pathway. PLoS ONE, 2:e350

Ducreux, L.J., Morris, W.L., Hedley, P.E., Shepherd, T., Davies, H.V., Millam, S. and Taylor, M.A. 2005. Metabolic engineering of high carotenoid potato tubers containing enhanced levels of beta-carotene and lutein. J. Exptl. Bot., 56:81-89

Dumas, Y., Dadomo, M., Di Lucca, G. and Grolier, P. 2003. Effects of environmental factors and agricultural techniques on antioxidant content of tomatoes. J. Sci. Food Agri., 83(5):369-382

Eisenreich, W., Bacher, A., Arigoni, D. and Rohdich, F. 2004. Biosynthesis of isoprenoids via the non-mevalonate pathway. Cell. Mol. Life Sci., 61:1401-1426

Fantini, E., Falcone, G., Frusciante, S., Giliberto, L. and Giuliano, G. 2013. Dissection of tomato lycopene biosynthesis through virus induced gene silencing. Plant Physiol., 163:986-998

Farre, G., Bai, C., Twyman, R.M., Capell, T., Christou, P. and Zhu C. 2011. Nutritious crops producing multiple carotenoids - a metabolic balancing act. Trends Plant Sci.,16(10):532-540

Fiedor, J. and Burda, K. 2014. Potential role of carotenoids as antioxidants in human health and disease. Nutrients, 6:466-488

Fraser, P.D. and Bramley, P.M. 2004. The biosynthesis and nutritional uses of carotenoids. Prog. Lipid Res., 43:228-265

Fraser, P.D., Enfissi, E.M., Halket, J.M., Truesdale, M.R., Yu, D., Gerrish, C. and Bramley, P.M. 2007. Manipulation of phytoene levels in tomato fruit: effects on isoprenoids, plastids, and intermediary metabolism. Plant Cell, 19:3194-3211

Fraser, P.D., Kiano, J.W., Truesdale, M.R., Schuch, W. and Bramley, P.M. 1999. Phytoene synthase-2 enzyme activity in tomato does not contribute to carotenoid synthesis in ripening fruit. Plant Mol. Biol., 40:687-698

Fraser, P.D., Misawa, N., Linden, H., Shigeyuki, Y., Kobayashi, K. and Sandmann, G. 1992. Expression in E. coli, purification and reactivation of a recombinant Erwinia uredovora phytoene desaturase. J. Biol. Chem., 267:19891-19895

Fray, R.G. and Grierson, D. 1993. Identification and genetic analysis of normal and mutant phytoene synthase genes of tomato by sequencing, complementation and co-suppression. Plant Mol. Biol., 22:589-602

Gady, A.L., Vriezen, W.H., Van de Wal, M.H., Huang, P., Bovy, A.G., Visser, R.G. and Bachem, C.W.B. 2012. Induced point mutations in the phytoene synthase 1 gene cause differences in carotenoid content during tomato fruit ripening. Mol. Breed., 29:801-812

Galpaz, N., Wang, Q., Menda, N., Zamir, D. and Hirschberg, J. 2008. Abscisic acid deficiency in the tomato mutant high-pigment 3 leading to increased plastid number and higher fruit lycopene content. Plant J., 53:717-730

Giuliano, G. 2014. Plant carotenoids: genomics meets multi- gene engineering. Curr. Opin. Plant Biol., 19:111-117

Guil-Guerrero, J.L., Martinez-Guirado, C., Del Mar Rebolloso- Fuentes, M. and Carrique-Perez, A. 2006. Nutrient composition and antioxidant activity of 10 pepper (Capsicum annuum) varieties. Eur. Food Res. Technol., 224:1-9

Hamauzu, Y., Chachin, K. and Ueda, Y. 1998. Effects of post- harvest temperature on the conversion of 14C- mevalonic acid to carotenes in tomato fruit. J. Jpn. Soc. Hortl. Sci., 67:549-555

Harjes, C.E., Rocheford, T.R., Bai, L., Brutnell, T.P., Kandianis, C.B. and Sowinski, S.G. 2008. Natural genetic variation in lycopene epsilon cyclase tapped for maize biofortification. Science, 319:330-333

Howitt, C.A. and Pogson, B.J. 2006. Carotenoid accumulation and function in seeds and non-green tissues. Plant Cell Environ., 29:435-445

Ilg, A., Brunoa, M., Beyera, P. and Al-Babili, S. 2014. Tomato carotenoid cleavage dioxygenases 1A and 1B: relaxed double bond specificity leads to a plenitude of dialdehydes, mono-apocarotenoids and isoprenoid volatiles. FEBS Open Biol., 4:584-593

Isaacson, T., Ronen, G., Zamir, D. and Hirschberg, J. 2002. Cloning of tangerine from tomato reveals a carotenoid

isomerase essential for the production of â-carotene and xanthophylls in plants. Plant Cell, 14:333-342

Jayaraj, J., Devlin, R. and Punja, Z. 2008. Metabolic engineering of novel keto carotenoid production in carrot plants. Transgenic Res., 17(4):489-501

Karlova, R., Rosin, F.M., Busscher-Lange, J., Parapunova, V., Do, P.T., Fernie, A.R., Fraser, P.D., Baxter, C., Angenent, G.C. and de Maagd, R.A. 2011. Transcriptome and metabolite profiling show that APETALA2a is a major regulator of tomato fruit ripening. Plant Cell, 23:923-941

Lanahan, M.B., Yen, H.C., Giovannoni, J.J. and Klee, H.J. 1994. The never-ripe mutation blocks ethylene perception in tomato. Plant Cell, 6:521-530

Lee, J.M., Joung, J.G., McQuinn, R., Chung, M.Y., Fei, Z., Tieman, D., Klee, H. and Giovannoni, J. 2012. Combined transcriptome, genetic diversity and metabolite profiling in tomato fruit reveals that the ethylene response factor SlERF6 plays an important role in ripening and carotenoid accumulation. Plant J., 70:191-204

Leivar, P., Tepperman, J.M., Monte, E., Calderon, R.H., Liu, T.L. and Quail, P.H. 2009. Definition of early transcriptional circuitry involved in light-induced reversal of PIF imposed repression of photomorphogenesis in young Arabidopsis seedlings. Plant Cell, 21:3535-3553

Levin, I., Ric de Vos, C.H., Tadmor,Y., Bovy, A., Lieberman, M., Oren-Shamir, M., Segev, O., Kolotilin, I., Keller, M., Ovadia , R., Meir, A. and Bino, R.J. 2006. High pigment tomato mutants more than just lycopene (a review). Isr. J. Plant Sci., 54:179-190

Li, F.Q., Murillo, C. and Wurtzel, E.T. 2007. Maize Y9 encodes a product essential for 15- cis-zeta-carotene isomerization. Plant Physiol., 144:1181-1189

Li, F.Q., Vallabhaneni, R. and Wurtzel, E.T. 2008a. PSY3, a new member of the phytoene synthase gene family conserved in the Poaceae and regulator of abiotic stress-induced root carotenogenesis. Plant Physiol., 146:1333-1345

Li, F.Q., Vallabhaneni, R., Yu, J., Rocheford, T. and Wurtzel, E.T. 2008b. The maize phytoene synthase gene family: Overlapping roles for carotenogenesis in endosperm, photomorphogenesis and thermal stress tolerance. Plant Physiol., 147:1334-1346

Lin, Z., Hong, Y., Yin, M., Li, C., Zhang, K. and Grierson, D. 2008. A tomato HD-Zip homeobox protein, LeHB-1, plays an important role in floral organogenesis and ripening. Plant J., 55:301-310

Liu, L., Shao, Z., Zhang, M. and Wang Q. 2015. Regulation of carotenoid metabolism in tomato. Mol. Plant., 8:28-39

Liu, Y.S., Roof, S., Ye, Z.B., Barry, C., Van Tuinen, A. and Vrebalov, J. 2004. Manipulation of light signal transduction as a means of modifying fruit nutritional quality in tomato. Proc. Nat’l. Acad. Sci., 101:9897- 9902

Lois, L.M., Campos, N., Putra, S.R., Danielsen, K., Rohmer, M. and Boronat, A. 2000. Carotenoid biosynthesis during tomato fruit development: regulatory role of 1-deoxy-D-xylulose 5-phosphatesynthase. Plant J., 22:503–513

Luo, Z., Zhang, J., Li, J., Yang, C., Wang, T., Ouyang, B., Li, H., Giovannoni, J. and Ye, Z. 2013. A STAYGREEN protein SlSGR1 regulates lycopene and b-carotene accumulation by interacting directly with SlPSY1 during ripening processes in tomato. New Phytol., 198:442-452

Manning, K., Tor, M., Poole, M., Hong, Y., Thompson, A.J., King, G.J., Giovannoni, J.J. and Seymour, G.B. 2006. A naturally occurring epigenetic mutation in a gene encoding an SBP-box transcription factor inhibits tomato fruit ripening. Nature Genet., 38:948-952

Martel, C., Vrebalov, J., Tafelmeyer, P. and Giovannoni, J.J. 2011. The tomato MADS-box transcription factor RIPENING INHIBITOR interacts with promoters involved in numerous ripening processes in a COLORLESS NONRIPENING-dependent manner. Plant Physiol., 157:1568-1579

Marty, I., Bureau, S., Sarkissian, G., Gouble, B., Audergon, J.M. and Albagnac, G. 2005. Ethylene regulation of carotenoid accumulation and carotenogenic gene expression in colour-contrasted apricot varieties (Prunus armeniaca). J. Exptl. Bot., 56:1877-1886

Mayer, M.P., Nievelstein, V. and Beyer, P. 1992. Purification and characterization of an NADPH-dependent oxidoreductase from chloroplasts of Narcissus- redox mediator possibly involved in carotene desaturation. Plant Physiol Biochem., 30:389-398

Mohan, V., Pandey, A., Sreelakshmi, Y. and Sharma, R. 2016. Neofunctionalization of chromoplast specific lycopene beta cyclase gene (CYC-B) in tomato clade. PLoS ONE, 11(4):1-22

Nisar, N., Li, L., Lu, S., Khin, N.C. and Pogson, B.J. 2015. Carotenoid metabolism in plants. Mol. Plant, 8(1):68- 82

Norris, R., Barrette, T.R. and DellaPenna, D. 1995. Genetic dissection of carotenoid synthesis in Arabidopsis defines plastoquinone as an essential component of phytoene desaturase. Plant Cell, 7:2139-2149

North, H.M., De Almeida, A., Boutin, J.P., Frey, A., To, A. and Botran, L. 2007. The Arabidopsis ABA-deficient mutant aba4 demonstrates that the major route for stress-induced ABA accumulation is via neoxanthin isomers. Plant J., 50:810-824

Pandurangaiah, S., Ravishankar, K.V., Shivashankar, K.S., Sadashiva, A.T., Pillakenchappa, K. and Narayanan, S.K. 2016. Differential expression of carotenoid biosynthetic pathway genes in two contrasting tomato genotypes for lycopene content. J. Biosci., 41(2):169-324

Park, H., Kreunen, S.S., Cuttriss, A.J., DellaPenna, D. and Pogson, B.J. 2002. Identification of the carotenoid isomerase provi des insi ght into carotenoid biosynthesis, prolamellar body formation, and photomorphogenesis. Plant Cell, 14:321-332

Pecker, I., Gabbay, R., Cunningham, F.X.J. and Hirschberg, J. 1996. Cloning and characterization of the cDNA for lycopene b-cyclase from tomato reveals decrease in its expression during fruit ripening. Plant Mol. Biol., 30:807-819

Pizarro, L. and Stange. C. 2009. Light-dependent regulation of carotenoid biosynthesis in plants. Cien. Inv. Agri., 36(2):143-162

Rodriguez-Concepcion, M. and Boronat, A. 2002. Elucidation of the methyl erythritol phosphate pathway for isoprenoid biosynthesis in bacteria and plastid: A metabolic milestone achieved through genomics. Plant Physiol., 130:1079-1089

Ronen, G., Carmel-Goren, L., Zamir, D. and Hirschberg, J. 2000. An alternative pathway to â-carotene formation in plant chromoplasts discovered by map-based cloning of Beta and old-gold colour mutations in tomato. Proc. Nat’l. Acad. Sci., U.S.A., 97(20):11102-11107

Ronen, G., Cohen, M., Zamir, D. and Hirschberg, J. 1999. Regulation of carotenoid biosynthesis during tomato fruit development: expression of the gene for lycopene epsilon-cyclase is down-regulated during ripening and is elevated in the mutant delta. Plant J., 17:341-351

Rosati, C., Aquilani, R., Dharmapuri, S., Pallara, P., Marusic, C., Tavazza, R., Bouvier, F., Camara, B. and Giuliano,

G. 2000. Metabolic engineering of beta-carotene and lycopene content in tomato fruit. The Plant J., 24:413-420

Rosati, C., Diretto, G. and Giuliano, G. 2010. Biosynthesis and engineering of carotenoids and apo-carotenoids in plants: state of the art and future prospects. Biotechnol. Genet. Engg. Rev., 26:139-162

Schofield, A. and Paliyath, G. 2005. Modulation of carotenoid biosynthesis during tomato fruit ripening through phytochrome regulation of phytoene synthase activity. Plant Physiol. Biochem., 43:1052-1060

Sun, L., Yuan, B., Zhang, M., Wang, L., Cui, M., Wang, Q. and Leng, P. 2012. Fruit-specific RNAi-mediated suppression of SlNCED1 increases both lycopene and beta-carotene contents in tomato fruit. J. Exptl. Bot., 63:3097-3108

Tadmor, Y., King, S., Levi, A., Davis, A., Meir, A., Wasserman, B., Hirschberg, J. and Lewinsohn, E. 2005. Comparative fruit colouration in watermelon and tomato. Food Res. Int’l., 38:837-841

Vishnevetsky, M., Ovadis, M., Zuker, A. and Vainstein, A. 1999. Molecular mechanisms underlying carotenogenesis in the chromoplast: multilevel regulation of carotenoid-associated genes. Plant J., 20:423-431

Von Lintig, J., Welsch, R., Bonk, M., Giuliano, G., Batschauer, A. and Kleinig, H. 1997. Light-dependent regulation of carotenoid biosynthesis occurs at the level of phytoene synthase expression and is mediated by phytochrome in Sinapsis alba and Arabidopsis thaliana seedlings. Plant J., 12:625-634

Vrebalov, J., Pan, I.L., Arroyo, A.J., McQuinn, R., Chung, M., Poole, M., Rose, J., Seymour, G., Grandillo, S. and Giovannoni, J. 2009. Fleshy fruit expansion and ripening are regulated by the tomato SHATTERPROOF gene TAGL1. Plant Cell, 21:3041-3062

Vrebalov, J., Ruezinsky, D., Padmanabhan, V., White, R., Medrano, D., Drake, R., Schuch, W. and Giovannoni, J. 2002. A MADS-box gene necessary for fruit ripening at the tomato ripening-inhibitor (Rin) locus. Science, 296:343-346

Walter, M.H. and Strack, D. 2011. Carotenoids and their cleavage products: biosynthesis and functions. Nat. Prod. Rep., 28:663-692

Welsch, R., Beyer, P., Hugueney, P., Kleinig, H. and Von Lintig, J. 2000. Regulation and activation of phytoene synthase, a key enzyme in carotenoid biosynthesis, during photomorphogenesis. Planta, 211:846-854

Welsch, R., Maass, D., Voegel, T., Della Penna, D. and Beyer, P. 2007. Transcription factor RAP2.2 and its interacting partner SINAT2: Stable elements in the carotenogenesis of Arabidopsis leaves. Plant Physiol., 145:1073-1085

Welsch, R., Wust, F., Bar, C., Al-babili, S. and Beyer, P. 2008. A third phytoene synthase is devoted to abiotic stress- induced abscisic acid formation in rice and defines functional diversification of phytoene synthase genes. Plant Physiol., 147:367-380

Yuan, H., Zhang , J., Divyashree, N. and Li, L. 2015. Carotenoid metabolism and regulation in horticultural crops. Hort. Res., 2: Article number 15036

Zhu, M., Chen, G., Zhou, S., Tu, Y., Wang, Y., Dong, T. and Hu, Z. 2013. A new tomato NAC (NAM/ATAF1/2/CUC2) transcription factor, SlNAC4, functions as a positive regulator of fruit ripening and carotenoid accumulation. Plant Cell Physiol., 55(1):119-135

Downloads

Published

31-12-2016

Issue

Section

Focus

How to Cite

Shilpa, P., Ravishankar, K. V., Shivashankara, K. S., Sadashiva, A. T., & Kumar, N. S. (2016). Molecular Mechanisms Involved in Biosynthesis and Regulation of Carotenoids in Plants. Journal of Horticultural Sciences, 11(2), 91-103. https://doi.org/10.24154/jhs.v11i2.78

Similar Articles

101-110 of 285

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)

1 2 3 4 > >>