Energy use pattern in rose onion (Allium cepa L.) cultivation
DOI:
https://doi.org/10.24154/jhs.v19i1.865Keywords:
Energy auditing, energy management, energy use pattern, onion cultivation, rose onionAbstract
A study was conducted to analyse the energy use pattern for cultivation and on farm processing of rose onion (Allium cepa L.). The energy auditing data was collected by stratified random sampling method using a face- to-face interaction at Sadali (Hobli), Sidlaghatta, Chikkaballapur, Karnataka. In this region, the energy utilized for different package of practices followed for rose onion cultivation by conventional practice are land preparation (5-tyne cultivator, 9-tyne cultivator and rotovator), sowing (broadcasting), thinning (manual), manure & fertilizer application (manual), plant protection {weeding (manual and chemical spray), chemical spraying (battery operated sprayer)}, irrigation (micro-irrigation), harvesting (manual) and detopping (manual). The energy use pattern for the above-mentioned various package of practices were found to be 4,207.95±37.21, 664.66±17.68, 53.31±2.68, 22,522.92±385.07, 2,534.40±155.55, 14,980.51±229.49, 807.74±20.80 and 1,571.75±42.77 MJ ha-1, respectively. The input energy, output energy and energy ratio were calculated as 47,343.23±484.65, 38,131.12±462.48 MJ ha-1 and 0.81±0.01, respectively. The energy intensive operation identified was manure and fertilizer application (fertilizer 46.80%; men 0.77%) both indirect and direct energy sources, followed by irrigation (electricity 31.09%; men 0.55%), land preparation (diesel 8.33%) and pesticide application (pesticide 4.53%). It is concluded that the fertilizer, electricity and diesel utilised in rose onion cultivation needs to be optimally minimised through management practices.
References
Chaudhary, V. P., Gangwar, B., & Pandey, D. K. (2014). Energy budgeting of sustainable rice-based cropping systems in sub-tropical India. Agricultural Mechanization in Asia, Africa and Latin America, 45(4), 58-68.
Esengun, K., Erdal, G., Gunduz, O., & Erdal, H. (2007). An economic analysis and energy use in stake-tomato production in Tokat province of Turkey. Renewable Energy, 32, 1873-81. https://doi.org/10.1016/j.renene.2006.07.005
Hartirli, S. A., Ozkan, B., & Fert, C. (2006). Energy inputs and crop yield relationship in greenhouse tomato production. Renewable Energy, 31, 427-438. https://doi.org/10.1016/j.renene.2005.04.007
Karale, D. S., Khambalkar, V. P., Bhende, S. M., Sharddha, B. A., & Wankhede, P. S. (2008). Energy economic of small farming crop production operations, World Journal of Agricultural Sciences, 4(4), 476-482.
Kitani, O., (1999). CIGR Handbook of Agricultural Engineering. Volume 5. Energy and Biomass Engineering. Vol (5), p.1-1. American Society of Agricultural and Biological Engineers, St. Joseph, Michigan, USA. https://doi.org/
13031/2013.36426
Koocheki, A., Ghorbani, R., Mondani, M., & Moradi, A. R. (2011). Pulses production systems in term of energy use efficiency and economical analysis in Iran. International Journal of Energy Economics and Policy, 1(4), 95-106.
Mandal, K. G., Saha, K. P., Ghosh, P. K., Hati, K. M., & Bandyopadhyay, K. (2002). Bioenergy and economic analysis of soybean-based crop production systems in central India. Biomass and Bioenergy, 23(5), 337-45. https://doi.org/10.1016/S0961-9534(02)00058-2
Ozkan, B., Ahmet, K., & Handan, A. (2004). An input-output energy analysis in greenhouse vegetable production: A case study for Antalya region of Turkey. Biomass and Bioenergy, 26, 89-95. https://doi:10.1016/S0961-9534(03)00080-1
Patil, S. L., Mishra, P. K., Loganandhan, N., Ramesha, M. N., & Math, S. K. N. (2014). Energy, economics, and water use efficiency of chickpea (Cicer arietinum L.) cultivars in Vertisols of semi-arid tropics, India. Current Science, 107(4), 656-664.
Sartori, L., Basso, B., Bertocco, M., & Oliviero, G. (2005). Energy use and economic evaluation of a three year crop rotation for conservation and organic farming in NE Italy. Biosystems Engineering, 91(2), 245-256. https://doi:10.1016/j.biosystemseng.2005.03.010.
Singh, H., Mishra, D., & Nahar, N. M. (2002). Energy use pattern in production agriculture of a typical village in Arid Zone, India-Part I, Energy Convers Manage, 43(16), 2275-2286. https://doi.org/10.1016/S0196-8904(01)00161-3
Singh, S., & Mittal, J. P. (1992). Energy in production agriculture. Mittal Publications, New Delhi, India.
Tripathi, H., Chandel, N. S., Tripathi, A. K., & Mishra, P. K. (2013). Energy use and economical analysis for green gram production under different farming systems in northern India. Agricultural Engineering Today, 37(3), 27-32.
www.apeda.in
www.indiastat.com
Downloads
Published
Issue
Section
License
Copyright (c) 2024 G Senthil Kumaran, A Carolin Rathinakumari, S A Venu, A R Surendra (Author)
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Authors retain copyright. Articles published are made available as open access articles, distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original author and source are credited.
This journal permits and encourages authors to share their submitted versions (preprints), accepted versions (postprints) and/or published versions (publisher versions) freely under the CC BY-NC-SA 4.0 license while providing bibliographic details that credit, if applicable.