Prediction of number of generations of serpentine leaf miner, Liriomyza trifolii (Burgess) (Agromyzidae: Diptera) in India assessed by CLIMEX under climate change scenario

Authors

  • Anusha N. Tamil Nadu Agricultural University, Coimbatore - 641003, India Author
  • Balasubramani V. Tamil Nadu Agricultural University, Coimbatore - 641003, India Author
  • Sridhar V. ICAR-Indian Institute of Horticultural Research, Bengaluru - 560089, India Author
  • Murugan M. Tamil Nadu Agricultural University, Coimbatore - 641003, Tamil Nadu, India Author
  • Johnson Thangaraj Edward Y.S. Tamil Nadu Agricultural University, Coimbatore - 641003, India Author
  • Satyamoorthy N.K. Tamil Nadu Agricultural University, Coimbatore - 641003, India Author
  • Kavitha M. Tamil Nadu Agricultural University, Coimbatore - 641003, India Author

DOI:

https://doi.org/10.24154/jhs.v19i2.2879

Keywords:

Liriomyza trifolii, Climate change, RCP 8.5, CLIMEX, India

Abstract

The serpentine leaf miner, Liriomyza trifolii, is an invasive pest that affects plants, causing damage to the leaves and reducing crop yield. Number of generations of serpentine leaf miner was assessed under current and expected future climate change scenarios. The assessment was done for Representative Concentration Pathway (RCP 8.5) future climate change scenario in India. L. trifolii would have had 16-19 generations, in base line and 17-24 in 2050-time frame under future climate change in Andhra Pradesh conditions. Under Arunachal Pradesh conditions, it would have had 6-14 generations in base line and is expected to complete the same number of generations in 2050, scenario. Under Sikkim conditions 3 - 4 and 5 number of generations were assessed for present and future climate change scenario. Suitability of the localities was expressed in terms of Ecoclimatic index (EI) ranging from 0 to > 20 by combining the interaction effect of various stress indices and growth indices for the development of L. trifolii. It was observed that in temperate areas the pest incidence may increase in future, in contrast to the decreasing trend in areas where already the prevailing temperatures are near upper thresholds. It is therefore expected that number of generations of L. trifolii would increase with the rising temperatures under climate change situations.

Author Biographies

  • Anusha N., Tamil Nadu Agricultural University, Coimbatore - 641003, India

    Tamil Nadu Agricultural University, Coimbatore - 641003, India

  • Balasubramani V., Tamil Nadu Agricultural University, Coimbatore - 641003, India

    Tamil Nadu Agricultural University, Coimbatore - 641003, India

  • Sridhar V., ICAR-Indian Institute of Horticultural Research, Bengaluru - 560089, India

    ICAR-Indian Institute of Horticultural Research, Bengaluru - 560089, India

  • Murugan M., Tamil Nadu Agricultural University, Coimbatore - 641003, Tamil Nadu, India

    Tamil Nadu Agricultural University, Coimbatore - 641003, India

  • Johnson Thangaraj Edward Y.S., Tamil Nadu Agricultural University, Coimbatore - 641003, India

    Tamil Nadu Agricultural University, Coimbatore - 641003, India

  • Satyamoorthy N.K., Tamil Nadu Agricultural University, Coimbatore - 641003, India

    Tamil Nadu Agricultural University, Coimbatore - 641003, India

  • Kavitha M., Tamil Nadu Agricultural University, Coimbatore - 641003, India

    Tamil Nadu Agricultural University, Coimbatore - 641003, India

References

Abolmaaty, S. M., Hassanein, M. K., Khalil, A. A., & Abou-Hadid, A. F. (2010). Impact of climatic changes in Egypt on degree day’s units and generation number for tomato leaf miner moth Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae). Nature and Science, 8(11), 122-

Andersen, A. & Hofsvang, T. (2010). Pest risk assessment of the American serpentine leaf miner, Liriomyza trifolii in Norway. Opinion of

the panel on plant health of the Norwegian scientific committee for food safety, 09/904-5 final, ISBN 978-82-8082-401-1 (Electronic

edition). pp 35.VKM, Oslo, Norway

Anonymous (1991). Castor: Annual report. Directorate of oilseeds research, Hyderabad. p.137

Arbab, A., & Mcneill, M. R. (2011). Determining suitability of thermal development models to estimate temperature parameters for embryonic development of Sitona lepidus Gyll. (Coleoptera: Curculionidae). Journal of Pest Science, 84, 303-311. https://doi.org/10.1007/s10340-011-0360-7

Chakraborty, K. (2011). Incidence and abundance of tomato leaf miner, Liriomyza trifolii Burgess in relation to the climatic conditions of Alipurduar, Jalpaiguri, West Bengal, India. Asian Journal of Experimental Biological Sciences, 2(3), 467-473. https://api.semanticscholar.org/CorpusID:85771465

Durairaj, C. (2007). Influence of abiotic factors on the incidence of serpentine leaf miner, Liriomyza trifolii. Indian Journal of Plant Protection, 35(2), 232-234.

Fettig, C. J., Dalusky, J. M., & Berisford, W. C. 2004. Controlling nantucket pine tip moth infestations in the Southeastern U.S. www.forestpests.org version 2.0, XHTML 1.1, CSS, 508

Herms, D.A. (2004). Using degree-days and plant phenology to predict pest activity, p. 59-59. In Krischik V., Davidson J. (eds) IPM of Midwest landscapes. St Paul, University of Minnesota, 316 p.

IPCC (2023). Summary for policymakers. In: Climate Change 2023: Synthesis report. Contribution of working groups I, II and III to the sixth assessment report of the intergovernmental panel on climate change [Core Writing Team, H. Lee and J. Romero (eds.)]. IPCC, Geneva, Switzerland, pp. 1-34. http://doi.org/10.59327/IPCC/AR6-9789291691647.001

Kaur, S., Kaur, S., Srinivasan, R., Cheema, D. S., Lal, T., Ghai, T. R., & Chadha, M. L. (2010). Monitoring of major pests on cucumber, sweet

pepper and tomato under net-house conditions in Punjab, India. Pest Management in Horticultural Ecosystems, 16(2), 148-155.

Kriticos, D. J., Maywald, G. F., Yonow, T., Zurcher, E. J., Herrmann, N. I., & Sutherst, R. (2015). Exploring the effects of climate on plants,

animals and diseases. Climex version, 4, 184.

Kriticos, D. J., Webber, B. L., Leriche, A., Ota, N., Macadam, I., Bathols, J., & Scott, J. K. (2012). CliMond: global high resolution historical and future scenario climate surfaces for bioclimatic modelling. Methods in Ecology and Evolution, 3(1), 53-64. https://doi.org/10.1111/

j.2041-210X.2011.00134.x

Lanzoni, A., Bazzocchi, G. G., Burgio, G., & Fiacconi, M. R. (2002). Comparative life history of Liriomyza trifolii and Liriomyza huidobrensis

(Diptera: Agromyzidae) on beans: effect of temperature on development. Environmental Entomology, 31(5), 797-803. https://doi.org/

1603/0046-225X-31.5.797

Leibee, G. L. (1984). Influence of temperature on development and fecundity of Liriomyza trifolii (Burgess)(Diptera: Agromyzidae) on

celery. Environmental entomology, 13(2), 497-501. https://doi.org/10.1093/ee/13.2.497

Miller, G. W., & Isger, M. B. (1985). Effects of temperature on the development of Liriomyza trifolii (Burgess)(Diptera: Agromyzidae).

Bulletin of entomological research, 75(2), 321-328. https://doi.org/10.1017/S0007485300014413

Minkenberg, O. P. (1988). Life history of the agromyzid fly Liriomyza trifolii on tomato at different temperatures. Entomologia

experimentalis et applicata, 48(1), 73-84. h t t p s : / / d o i . o r g / 1 0 . 1 1 1 1 / j . 1 5 7 0 -7458.1988.tb02301.x

Nietschke, B. S., Magarey, R. D., Borchert, D. M., Calvin, D. D., & Jones, E. (2007). A developmental database to support insect phenology models. Crop Protection, 26(9), 1444-1448. https://doi.org/10.1016/j.cropro.2006.12.006

Parella, M. P. (1987). Biology of Liriomyza. Annual Rereview of Entomology, 32, 201-224.

Rao, S. M., Rama Rao, C. A., Vennila, S., Raju, B. M. K., Srinivas, K., Padmaja, P. C. M. Rao, A.V.M.S., Maheswari, M., Rao, V.U.M.&

Venkateswarlu, B. (2012). Meta-analysis of impact of elevated CO2 on host–insect herbivore interactions. Research Bulletin, 2, 48.

Roltsch, W. J., Zalom, F. G., Strawn, A. J., Strand, J. F., & Pitcairn, M. J. (1999). Evaluation of several degree-day estimation methods in

California climates. International Journal of Biometeorology, 42, 169-176. https://doi.org/10.1007/s004840050101

Sakamaki, Y., Chi Yu Cheng, C. Y., & Kushigemachi, K. (2003). Lower threshold temperature and total effective temperature for the development of Liriomyza sativae Blanchard on kidney beans. Bulletin of the Faculty of Agriculture, Kagoshima University, 53, 21-28.

Schmaedick, M., & Nyrop, J. (1993). Sampling second generation spotted tentiform leaf miner: a means to reduce overall control costs and facilitate biological control of mites in apple orchards. NY. Food Life Science Bulletin, 143, ISSN 0362-0069.

Sharpe, P. J., & DeMichele, D. W. (1977). Reaction kinetics of poikilotherm development. Journal of theoretical biology, 64(4), 649-670. https://doi.org/10.1016/0022-5193 (77)90265-X

Shi, P., & Ge, F. (2010). A comparison of different thermal performance functions describing temperature-dependent development rates. Journal of Thermal Biology, 35(5), 225-231. https://doi.org/10.1016/j.jtherbio.2010.05. 005

Singh, R. K., Nath, P., & Singh, P. K. (2005). Effect of sowing time of bottle gourd on the population of serpentine leaf miner, Liriomyza trifolii Burgess. Journal of Experimental Zoology, 8, 145-149.

Stange, E. E., & Ayres, M. P. (2010). Climate change impacts: Insects. Encyclopedia of life sciences, 1. http://doi.org/10.1002/97804700

a0022555

Sutherst, R. W., Maywald, G. F., & Kriticos, D. J. (2007). CLIMEX version 3: user’s guide. Hearne Scientific Software Pty Ltd., Melbourne, Australia. pp. 1–131.

Tokumaru, S. and Abe, Y. (2003). Effects of temperature and photoperiod on development and total reproductive potential of Liriomyza

sativae, L. trifolii, and L. bryoniae (Diptera: Agromyzidae). Japanese Journal of Applied Entomology and Zoology, 47, 143-152.

Vercambre, B., & Thiery, A. (1983). Données bio- écologiques sur Liriomyza trifolii Burgess (Dipt., Agromyzidae) et de son principal

parasite Hemiptarsenus semialbiclava Girault (Hym., Eulophidae). Ninth African Symposium on Horticultural Crops, Mahe, Seychelles, 27-29/7/83 http://agritrop.cirad.fr/446051

Zhang, Z., Cazelles, B., Tian, H., Christian Stige, L., Bräuning, A., & Stenseth, N. C. (2009). Periodic temperature-associated drought/flood

drives locust plagues in China. Proceedings of the Royal Society B: Biological Sciences, 276(1658), 823-831. https://doi.org/10.1098/

rspb.2008.1284

Downloads

Published

22-10-2024

How to Cite

Nitta, A., V., B. ., Sridhar V, Murugan M., Johnson Thangaraj Edward Y.S., Satyamoorthy N.K., & Kavitha M. (2024). Prediction of number of generations of serpentine leaf miner, Liriomyza trifolii (Burgess) (Agromyzidae: Diptera) in India assessed by CLIMEX under climate change scenario. Journal of Horticultural Sciences, 19(2). https://doi.org/10.24154/jhs.v19i2.2879

Similar Articles

1-10 of 238

You may also start an advanced similarity search for this article.