Response of selected scion and rootstock grape (Vitis spp.) genotypes to induced drought stress

Authors

  • S Amulya ICAR- Indian Agricultural Research Institute, New Delhi - 110012, India Author
  • J Prakash ICAR- Indian Agricultural Research Institute, New Delhi - 110012, India Author
  • S K Singh ICAR-Indian Institute of Horticultural Research, Bengaluru - 560089, India Author
  • M K Verma ICAR- Central Institute of Temperate Horticulture, Srinagar - 191132, India Author
  • V B Patel Indian Council of Agricultural Research, New Delhi - 110012, India Author
  • M Thakre ICAR- Indian Agricultural Research Institute, New Delhi - 110012, India Author
  • C Kumar ICAR- Indian Agricultural Research Institute, New Delhi - 110012, India Author
  • K Shankar ICAR- Indian Agricultural Research Institute, New Delhi - 110012, India Author

DOI:

https://doi.org/10.24154/jhs.v19i1.2370

Keywords:

Clustering, drought-induced, principal component analysis, V. parviflora, well-watered

Abstract

Climate change is expected to elevate drought frequency, straining agricultural freshwater resources. Developing drought-tolerant grapevine varieties is crucial. This study examined grape scion and rootstock genotypes under well-watered (WW) and induced-drought (ID) conditions. ID treatment reduced vine length by 11.34-35.15%, with Vitis parviflora, 110R, and Male Hybrid rootstocks showing superior growth. Root length increased under ID, indicating an adaptive moisture-seeking response. The ID treatment led to substantial reduction in leaf count and average leaf area, especially in Flame Seedless (27.71 and 19.07 cm2, respectively). Drought stress elevated chlorophyll a:b ratio, affecting chlorophyll degradation in different genotypes. Significant variations were observed in leaf and root iron (Fe) and zinc (Zn) contents. Enzyme activities particularly peroxidase and polyphenol oxidase especially rose under drought, particularly in V. parviflora (3.39 μM guaiacol min-1 mg-1 protein and 1.33EU/ml/min respectively) likely to be contributing in drought tolerance mechanism. Principal component analysis (PCA) highlighted impact of traits on genotypes, emphasizing V. parviflora, Male Hybrid and Pusa Navrang as superior drought stress tolerant genotypes. Genotype clustering confirmed distinct groupings, while, correlation analysis unveiled intricate trait interactions.

Author Biographies

  • S Amulya , ICAR- Indian Agricultural Research Institute, New Delhi - 110012, India

    Ph.D. Student

    Division of Fruits and Horticultural Technology

    Rank 1

  • J Prakash, ICAR- Indian Agricultural Research Institute, New Delhi - 110012, India

    Principal Scientist,

    ICAR-IARI

    Rank 2

  • S K Singh, ICAR-Indian Institute of Horticultural Research, Bengaluru - 560089, India

    Director and Professor

    IARI-IIHR

    Rank 3

  • M K Verma, ICAR- Central Institute of Temperate Horticulture, Srinagar - 191132, India

    Director

    ICAR- Central Institute of Temperate Horticulture

    Rank 4

  • V B Patel, Indian Council of Agricultural Research, New Delhi - 110012, India

    ADG, Horticulture, ICAR

    Rank 5

  • M Thakre, ICAR- Indian Agricultural Research Institute, New Delhi - 110012, India

    Senior scientist,

    Division of Fruits and Horticultural Technology

    Rank 6

  • C Kumar, ICAR- Indian Agricultural Research Institute, New Delhi - 110012, India

    Scientist,

    Division of Fruits and Horticultural Technology

    Rank 7

  • K Shankar, ICAR- Indian Agricultural Research Institute, New Delhi - 110012, India

    Ph.D. scholar

    Division of Fruits and Horticultural Technology

    Rank 8

References

Alston, J. M., & Sambucci, O. (2019). Grapes in the world economy. The grape genome, 1-24.https://link.springer.com/chapter/10.1007/978-3-030-18601-2_1

Chaves, M. M., Zarrouk, O., Francisco, R., Costa, J. M., Santos, T., Regalado, A. P., & Lopes, C. M. (2010). Grapevine under deficit irrigation: hints from physiological and molecular data. Annals of Botany, 105(5), 661-76. https://doi.org/10.1093/aob/mcq030

Dastneshan, S., Bihamta, M., Abbasi, A., & Sabokdast Nodehi, M. (2022). Study the activity of antioxidant enzymes in the leaves of bean (Phaseolus vulgaris L.) genotypes under normal and moisture stress conditions. Iranian

Journal of Field Crop Science, 53(2), 17-27.10.22059/IJFCS.2020.308703.654748

Dry, P. R., Loveys, B. R., & During, H. (2015). Partial drying of the root zone of grape. I. Transient changes in shoot growth and gas exchange. VITIS-Journal of Grapevine Research, 39(1), 3.

Fahim, S., Ghanbari, A., Naji, A. M., Shokohian, A. A., Lajayer, H. M., Gohari, G., & Hano, C. (2022). Multivariate discrimination of some grapevine cultivars under drought stress in Iran. Horticulturae, 8(10), 871.https://doi.org/

3390/horticulturae8100871

Flexas, J., & Medrano, H. (2002). Photosynthetic responses of C3 plants to drought. Advances in Plant Physiology, 4, 1-56.

Ganopoulos, I., Moysiadis, T., Xanthopoulou, A., Ganopoulou, M., Avramidou, E., Aravanopoulos, F. A., Tani, E., Madesis, P., Tsaftaris, A., & Kazantzis, K. (2015). Diversity of morpho-physiological traits in worldwide sweet cherry cultivars of Genebank collection using multivariate analysis. Scientia Horticulturae, 197, 381-391.https://doi.org/

1016/j.scienta.2015.09.061

Gurjar, P. S., Singh, S. K., Singh, A. K., & Verma, M. K. (2015). Field reaction and biochemical response of grape genotypes to anthracnose incidence under sub-tropical conditions. International Journal of Natural Sciences,

(2), 248-255.https://www.researchgate.net/publication/281712113

Halpin, B. E., & Lee, C. Y. (1987). Effect of blanching on enzyme activity and quality changes in green peas. Journal of Food Science, 52(4), 1002-1 0 0 5 . ht t p s :/ / doi.org/ 1 0 . 1111 / j. 1 3 6 5 -2621.1987.tb14261.x

Hanikenne, M., & Bouche, F. (2023). Iron and zinc homeostasis in plants: a matter of trade- offs. Journal of Experimental Botany, 74(18), 5426-5430.https://doi.org/10.1093/jxb/erad304

Hiscox, J. D., & Israelstam, G. F. (1979). A method for the extraction of chlorophyll from leaf tissue without maceration. Canadian journal of botany, 57(12), 1332-1334.https://doi.org/10.1139/b79-163

Intergovernmental Panel on Climate Change (2014). Climate Change 2014: Synthesis report. Contribution of working groups 646 I. II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, 151.

Majidi, M. M., Mirlohi, A., & Amini, F. (2009). Genetic variation, heritability and correlations of agro-morphological traits in tall fescue (Festuca arundinacea Schreb.). Euphytica, 167(3), 323-331.https://doi.org/10.1007/s10681-009-9887-6

Medrano, H., Tortosa, I., Montes, E., Pou, A., Balda, P., Bota, J., & Escalona, J. M. (2018). Genetic improvement of grapevine (Vitis vinifera L.) water use efficiency: Variability among varieties and clones. In Water Scarcity and Sustainable Agriculture in Semiarid Environment, 377-401.https://doi.org/10.1016/B978-0-12-813164-0.00016-8

Serra, I., Strever, A., Myburgh, P. A., & Deloire, A. (2014). The interaction between rootstocks and cultivars (Vitis vinifera L.) to enhance drought tolerance in grapevine. Australian Journal of grape and wine Research, 20(1), 1-14. https://doi.org/10.1111/ajgw.12054

Shankar, K., Awasthi, O., Dubey, A., Singh, A., Prakash, J., & Dolatabadian, A. (2023). Rootstock mediated alteration in morphology and photosystem in sweet orange (Citrus sinensis) scion cv. Pusa Sharad under NaCl stress. Indian Journal of Agricultural Sciences, 93(10), 1103-1107.https://doi.org/10.56093/ijas.v93i10.139420

Shimoda, Y., Ito, H., & Tanaka, A. (2012). Conversion of chlorophyll b to chlorophyll a precedes magnesium dechelation for protection against necrosis in Arabidopsis. The Plant Journal, 72(3), 501-511. https://doi.org/10.1111/j.1365-313X.2012.05095.x

Skendi, A., Papageorgiou, M., & Stefanou, S. (2020). Preliminary study of microelements, phenolics as well as antioxidant activity in local, homemade wines from north-east Greece. Foods, 9(11), 1607.https://doi.org/10.3390/ foods9111607

Tandonnet, J. P., Cookson, S. J., Vivin, P., & Ollat, N. (2010). Scion genotype controls biomass allocation and root development in grafted grapevine. Australian Journal of Grape and Wine Research, 16(2), 290-300.https://doi.org/

1111/j.1755-0238.2009.00090.x

Tsegay, D., Amsalem, D., Almeida, M., & Crandles, M. (2014). Responses of grapevine rootstocks to drought stress. International Journal of Plant Physiology and Biochemistry, 6(1), 1-6. doi: 10.5897/IJPPB2013.0199

Wu, Y., & Cosgrove, D. J. (2000). Adaptation of roots to low water potentials by changes in cell wall extensibility and cell wall proteins. Journal of Experimental Botany, 51(350), 1543-1553. https://doi.org/10.1093/jexbot/51.350.1543

Yang, Y., Sun, C., Yao, Y., Zhang, Y., & Achal, V. (2011). Growth and physiological responses of grape (Vitis vinifera “Combier”) to excess zinc. Acta Physiologiae Plantarum, 33, 1483-1491. https://doi.org/10.1007/s11738-010-0687-3

Zhang, S. Z., Zhang, F., & Hua, B. Z. (2008). Enhancement of phenylalanine ammonia lyase, polyphenoloxidase, and peroxidase in cucumber seedlings by Bemisiatabaci (Gennadius) (Hemiptera: Aleyrodidae) infestation.Agricultural Sciences in China, 7(1), 82-87.https://doi.org/10.1016/S1671-2927(08)60025-5

Downloads

Published

30-06-2024

Issue

Section

Research Papers

How to Cite

S, A., Dr. Jaiprakash, Singh, S. K., Verma, M. K., Patel, V. B., Thakre, M., Chavlesh Kumar, & Kripa Shankar. (2024). Response of selected scion and rootstock grape (Vitis spp.) genotypes to induced drought stress. Journal of Horticultural Sciences, 19(1). https://doi.org/10.24154/jhs.v19i1.2370

Similar Articles

1-10 of 177

You may also start an advanced similarity search for this article.