Climate change impacts on tuber crops: vulnerabilities and adaptation strategies


  • Raju Saravanan ICAR-Central Tuber Crops Research Institute
  • Sridhar Gutam ICAR-Indian Institute of Horticultural Research



Adaptation strategies, climate change, extreme events, temperature, tuber crops


Climate change poses significant challenges to root and tuber crops, requiring robust adaptation strategies to mitigate vulnerabilities. This review examines the impacts of climate change on root and tuber crops, including rising temperatures, altered rainfall patterns, extreme weather events, and changes in pest and disease dynamics. These changes significantly affect root and tuber crop production, leading to lower yields, compromised quality, increased susceptibility to pests and diseases, and limited access to water resources. Adaptation strategies encompass various approaches, such as agronomic practices, crop diversification, improved water management, breeding for climate resilience, and agroecological methods. However, addressing knowledge gaps and research needs is crucial for better-understanding climate change impacts and developing effective adaptation strategies for root and tuber crops. Future research should prioritize resilient cultivar identification, enhanced cropping systems, improved pest and disease management, and exploring socio-economic dimensions of adaptation. This review emphasizes the urgent need to address climate change impacts on tropical root and tuber crops. It highlights the critical role of adaptive measures in ensuring long-term sustainability and food security in a changing climate


Download data is not yet available.


Acevedo, M., Pixley, K. V., Zinyengere, N., Meng, S., Tufan, H., Cichy, K. A., Bizikova, L., Isaacs, K., Alpi, K. M. and Porciello, J. 2020. A scoping review of adoption of climate-resilient crops by small-scale producers in low- and middle-income countries. Nature Plants, 6(10): 1231-1241. DOI:

Adhikari, U., Nejadhashemi, A. P. and Woznicki, S. A. 2015. Climate change and eastern Africa: a review of impact on major crops. Food Energy Secur., 4(2): 110-132. DOI:

Ali, A. D. 2014. Measuring climate change impacts on cassava and sweet potato production in Trinidad and Tobago using a crop climate index. Doctoral Dissertation. The University of the West Indies.

Ávila-Valdés, A., Quinet, M., Lutts, S., Martínez, J. P. and Lizana, X. C. 2020. Tuber yield and quality responses of potato to moderate temperature increase during tuber bulking under two water availability scenarios. Field Crops Res., 251: 107786. DOI:

Bakala, H. S., Singh, G. and Srivastava, P. 2020. Smart breeding for climate resilient agriculture. In Plant breeding-current and future views. Intech Open. doi: 10.5772/intechopen.94847. DOI:

Banga, S. S. and Kang, M. S. 2014. Developing climate-resilient crops. J. Crop Improv., 28(1): 57-87. DOI:

Barbeau, C. D., Oelbermann, M., Karagatzides, J. D. and Tsuji, L. J. 2015. Sustainable agriculture and climate change: Producing potatoes (Solanum tuberosum L.) and bush beans (Phaseolus vulgaris L.) for improved food security and resilience in a Canadian subarctic first nations community. Sustainability, 7(5): 5664-5681. DOI:

Bellotti, A., Herrera Campo, B. V. and Hyman, G. 2012. Cassava production and pest management: present and potential threats in a changing environment. Trop. Plant Biol., 5: 39-72. DOI:

Bisimwa, E. B., Birindwa, D. R., Yomeni, M. O., Rudahaba, N., Byamungu, K. and Bragard, C. 2019. Multiple cassava viruses' co- infections and resurgence of pests are leading to severe symptoms and yield losses on cassava in the South-Kivu Region, Democratic Republic of Congo. Am. J. Plant Sci., 10(11): 1969-1988. DOI:

Blum, A. 2005. Drought resistance, water-use efficiency, and yield potentialare they compatible, dissonant, or mutually exclusive? Aust. J. Agric. Res., 56(11): 1159-1168. DOI:

Brar, A. S., Kaur, K., Sindhu, V. K., Tsolakis, N. and Srai, J. S. 2022. Sustainable water use through multiple cropping systems and precision irrigation. J. Clean. Prod., 333: 130117. DOI:

Cairns, J. E. and Prasanna, B. M. 2018. Developing and deploying climate-resilient maize varieties in the developing world. Curr. Opin. Plant Biol., 45: 226-230. DOI:

Cattivelli, L., Rizza, F., Badeck, F. W., Mazzucotelli, E., Mastrangelo, A. M., Francia, E., Marè, C. and Stanca, A. M. 2008. Drought tolerance improvement in crop plants: an integrated view from breeding to genomics. Field Crops Res.,105(1-2): 1-14. DOI:

Ceccarelli, S., Grando, S., Maatougui, M., Michael, M., Slash, M., Haghparast, R., Rahmanian, M., Taheri, A., AL-Yassin, A., Benbelkacem, A., Labdi, M., Mimoun, H. and Nachit, M. 2010. Plant breeding and climate changes. J. Agric. Sci., 148(6): 627-637. DOI:

Cedric, L. S., Adoni, W. Y. H., Aworka, R., Zoueu, J. T., Mutombo, F. K., Krichen, M. and Kimpolo, C. L. M. 2022. Crops yield prediction based on machine learning models: Case of West African countries. Smart Agric. Technol., 2: 100049. DOI:

Chakraborty, S. and Newton, A. C. 2011. Climate change, plant diseases and food security: an overview. Plant Pathol., 60(1): 2-14. DOI:

Challinor, A. J., Wheeler, T. R., Craufurd, P. Q. and Slingo, J. M. 2005. Simulation of the impact of high temperature stress on annual crop yields. Agric. For. Meteorol., 135(1-4): 180-189. DOI:

Chartzoulakis, K. and Bertaki, M. 2015. Sustainable water management in agriculture under climate change. Agric. Agric. Sci. Procedia, 4: 88-98. DOI:

Chaya, M., Xiang, T., Green, A., and Gu, B. 2021. Impact of climate change on pests of rice and cassava. CABI Rev., doi: 10.1079/ PAVSNNR202116050. DOI:

Dahal, K., Li, X. Q., Tai, H., Creelman, A. and Bizimungu, B. 2019. Improving potato stress tolerance and tuber yield under a climate change scenario-a current overview. Front. Plant Sci., 10: 563. doi: 10.3389/fpls.2019.00563. DOI:

Dangles, O., Carpio, C., Barragan, A. R., Zeddam, J. L. and Silvain, J. F. 2008. Temperature as a key driver of ecological sorting among invasive pest species in the tropical Andes. Ecol. Appl., 18(7): 1795-1809. DOI:

De Costa, W. A. J. M. 2010. Adaptation of agricultural crop production to climate change: A policy framework for Sri Lanka. J. Natl. Sci. Found. Sri Lanka, 38(2): 79-89. DOI:

Delgado, J. A., Groffman, P. M., Nearing, M. A., Goddard, T., Reicosky, D., Lal, R., Newell, R., Charles, K., Rice, W., Towery, D. and Salon, P. 2011. Conservation practices to mitigate and adapt to climate change. J. Soil Water Conserv., 66(4): 118-129. DOI:

Easterling, W. E., Aggarwal, P. K., Batima, P., Brander, K. M., Erda, L., Howden, S. M., Kirilenko, J., Morton, J., Soussana, J. F., Schmidhuber, J. and Tubiello, F. N. 2007. Food, fibre and forest products. Climate Change, pp. 273-313.

El-Nashar, W. and Elyamany, A. 2023. Adapting irrigation strategies to mitigate climate change impacts: A value engineering approach. Water Resour. Manage., 37: 2369-2386. DOI:

Fand, B. B., Tonnang, H. E. Z., Bal, S. K. and Dhawan, A. K. 2018. Shift in the manifestations of insect pests under predicted climatic change scenarios: key challenges and adaptation strategies. In: Bal, S., Mukherjee, J., Choudhury, B., Dhawan, A. (eds) Advances in Crop Environment Interaction. Springer, Singapore. doi: 10.1007/978-981-13-1861- 0_15. DOI:

FAO. 2015. Climate change and food security: risks and responses. Retrieved from https://

FAO. 2021. Crop year area harvested ha area harvested (Mill ha). FAO Database. https://

Gatonye, M. and Adam, R. 2022. Case studies of success stories in Kenya's agribusiness sector. Nairobi, Kenya: Ukama Ustawi: Diversification for resilient agribusiness ecosystems in East and Southern Africa (ESA) and resilient and aquatic food systems for healthy people and planet (RAqFS) initiatives. CGIAR.

George, T. S., Taylor, M. A., Dodd, I. C. and White, P. J. 2017. Climate change and consequences for potato production: a review of tolerance to emerging abiotic stress. Potato Res., 60: 239-268. DOI:

Ghaffar, A., Rahman, M. H. U., Ahmed, S., Haider, G., Ahmad, I., Khan, M. A., Hussain, J. and Ahmed, A. 2022. Adaptations in cropping system and pattern for sustainable crops production under climate change scenarios. In: Improvement of Plant Production in the Era of Climate Change. CRC Press. pp. 1-34. DOI:

Graziosi, I., Minato, N., Alvarez, E., Ngo, D. T., Hoat, T. X., Aye, T. M., Pardo, J. M., Wongtiem, P. and Wyckhuys, K. A. 2016. Emerging pests and diseases of South-east Asian cassava: a comprehensive evaluation of geographic priorities, management options and research needs. Pest Manage. Sci., 72(6): 1071-1089. DOI:

Gupta, D., Dadu, R. H. R., Sambasivam, P., Bar, I., Singh, M., Beera, N. and Biju, S. 2019. Genomic designing of climate-smart pulse crops. In: Kole, C. (eds) Springer, Cham. doi: 10.1007/978-3-319-96932-9_4. DOI:

Gweyi-Onyango, J. P., Sakha, M. A. and Jefwa, J. 2021. Agricultural interventions to enhance climate change adaptation of underutilized root and root and tuber crops. In: African handbook of climate change adaptation. Cham: Springer International Publishing. pp. 61-86. DOI:

Hastilestari, B. R., Lorenz, J., Reid, S., Hofmann, J., Pscheidt, D., Sonnewald, U. and Sonnewald, S. 2018. Deciphering source and sink responses of potato plants (Solanum tuberosum L.) to elevated temperatures. Plant Cell Environ., 41(11): 2600-2616. DOI:

Hatfield, J. L., Boote, K. J., Kimball, B. A., Ziska, L. H., Izaurralde, R. C., Ort, D., Thomson, A. M. and Wolfe, D. 2011. Climate impacts on agriculture: Implications for crop production. Agron. J., 103: 351-370. DOI:

Haverkort, A. J. and Verhagen, A. 2008. Climate change and its repercussions for the potato supply chain. Potato Res., 51: 223-237. DOI:

Hijmans, R. J. 2003. The effect of climate change on global potato production. Am. J. Potato Res., 80: 271-279. DOI:

Hobday, A. J., Oliver, E. C., Gupta, A. S., Benthuysen, J. A., Burrows, M. T., Donat, M. G. and Smale, D. A. 2018. Categorizing and naming marine heatwaves. Oceanography. 31(2): 162-173. DOI:

Hue, S. and Low, M. 2015. An insight into sweet potato weevils management: A Review. Psyche, pp.1-11. DOI:

Hussain, M. I., Al-Dakheel, A. J. and Ahmed, M. 2023. Integrated crop-livestock system case study: prospectus for Jordan's climate change adaptation. In: Global agricultural production: resilience to climate change. Cham: Springer International Publishing. pp. 565-585. DOI:

Iqbal, Z., Iqbal, M., Khan, M. I. and Ansari, M. 2021. Toward integrated multi-omics intervention: rice trait improvement and stress management. Front. Plant Sci., 12 :741419. 10.3389/fpls.2021.741419 DOI:

Kerddee, S., Kongsil, P. and Nakasathien, S. 2021. Waterlogging tolerance and recovery in canopy development stage of Cassava (Manihot esculenta Crantz). Agrivita, J. Agric. Sci., 43(2): 233-244. DOI:

Kimball, B. A. 2016. Crop responses to elevated CO2 and interactions with H2O, N, and temperature. Curr. Opin. Plant Biol., 31: 36-43. DOI:

Kolombia, Y. A., Karssen, G., Viaene, N., Kumar, P. L., Joos, L., Coyne, D. L. and Bert, W. 2017. Morphological and molecular characterisation of Scutellonema species from yam (Dioscorea spp.) and a key to the species of the genus. Nematology, 19(7): 751-787. DOI:

Kriticos, D. J., Darnell, R. E., Yonow, T., Ota, N., Sutherst, R. W., Parry, H. R., Mugerwa, H., Maruthi, M. N., Seal, S. E., Colvin, J., Macfadyen, S., Kalyebi, A., Hulthen, A. and De Barro, P. J. 2020. Improving climate suitability for Bemisia tabaci in East Africa is correlated with increased prevalence of whiteflies and cassava diseases. Sci. Rep., 10(1): 22049. DOI:

Kumar, P., Rouphael, Y., Cardarelli, M. and Colla, G. 2017. Vegetable grafting as a tool to improve drought resistance and water use efficiency. Front. Plant Sci., 8: 1130. DOI:

Lal, M. K., Sharma, N., Adavi, S. B., Sharma, E., Altaf, M. A., Tiwari, R. K., Kumar, R., Kumar, A., Dey, A., Paul, V., Singh, B. and Singh, M. P. 2022. From source to sink: mechanistic insight of photoassimilates synthesis and partitioning under high temperature and elevated [CO2]. Plant Mol. Biol., 110(4-5): 305-324. DOI:

Lal, M., Yadav, S., Pant, R. P., Dua, V. K., Singh, B. P. and Kaushik, S. K. 2017. Impact of global climate change on potato diseases and strategies for their mitigation. In: Sustainable potato production and the impact of climate change. IGI Global. pp. 205-227. Lee, Y. H., Sang, W. G., Baek, J. K., Kim, J. H., Shin, P., Seo, M. C. and Cho, J. I. 2020. The effect of concurrent elevation in CO2 and temperature on the growth, photosynthesis, and yield of potato crops. PLoS One, 15(10): e0241081. DOI:

Legg, J. P., Jeremiah, S. C., Obiero, H. M., Maruthi, M. N., Ndyetabula, I., Okao-Okuja, G., Bouwmeester, H., Bigirimana, S., Tata-Hangy, W., Gashaka, G., Mkamilo, G., Alicai, T. and Lava Kumar, P. 2011. Comparing the regional epidemiology of the cassava mosaic and cassava brown streak virus pandemics in Africa. Virus Res., 159(2): 161-170. DOI:

Legg, J. P., Lava Kumar, P., Makeshkumar, T., Tripathi, L., Ferguson, M., Kanju, E., Ntawuruhunga, P. and Cuellar, W. 2015. Cassava virus diseases: biology, epidemiology, and management. Adv. Virus Res., 91: 85-142. DOI:

Legrève, A. and Duveiller, E. 2010. Preventing potential diseases and pest epidemics under a changing climate. Climate Change and Crop Prod., 1: 50-70. DOI:

Levy, D., Coleman, W. K. and Veilleux, R. E. 2013. Adaptation of potato to water shortage: irrigation management and enhancement of tolerance to drought and salinity. Am. J. Potato Res., 90: 186-206. DOI:

Liu, G., Yang, Y., Liu, W., Guo, X., Xue, J., Xie, R., Ming, B., Wang, K., Hou, P. and Li, S. 2020. Leaf removal affects maize morphology and grain yield. Agronomy, 10(2): 269. DOI:

Lobell, D. B., Burke, M. B., Tebaldi, C., Mastrandrea,M. D., Falcon, W. P. and Naylor, R. L. 2008. Prioritizing climate change adaptation needs for food security in 2030. Science, 319(5863): 607- 610. DOI:

Lobell, D. B., Schlenker, W. and Costa-Roberts, J. 2011. Climate trends and global crop production since 1980. Science, 333(6042): 616-620. DOI:

Low, J. W., Ortiz, R., Vandamme, E., Andrade, M., Biazin, B. and Grüneberg, W. J. 2020. Nutrient- dense orange-fleshed sweetpotato: advances in drought-tolerance breeding and understanding of management practices for sustainable next- generation cropping systems in sub-Saharan Africa. Front. Sustain. Food Syst., 4. doi: 10.3389/fsufs.2020.00050. DOI:

Mabhaudhi, T., Chimonyo, V. G., Chibarabada, T. P. and Modi, A. T. 2017. Developing a roadmap for improving neglected and underutilized crops: A case study of South Africa. Front. Plant Sci., 8. doi: 10.3389/fpls.2017.02143. DOI:

Mandapaka, M., Sarkar, B., Vanaja, M., Rao, M., Prasad, J.V.N., Mathyam, P. Gajjala, R., Venkateswarlu, B., Choudhury, P., Yadava, D.K., Bhaskar, S. and Alagusundaram, K. 2019. Climate resilient crop varieties for sustainable food production under aberrant weather conditions. NICRA.

Maqbool, A., Abrar, M., Bakhsh, A., Çalýþkan, S., Khan, H. Z., Aslam, M. and Aksoy, E. 2020. Biofortification under climate change: the fight between quality and quantity. In: Fahad, S., et al. Environ. Clim. Plant Veget. Growth. Springer, Cham. doi: /10.1007/978-3-030- 49732-3_9 DOI:

Meena, R. K., Vikas, T. P., Yadav, R. P., Mahapatra, S. K., Surya, J. N., Singh, D. and Singh, S. K. 2019. Local perceptions and adaptation of indigenous communities to climate change: Evidences from high mountain Pangi valley of Indian Himalayas. Indina J. Tradit. Knowl., 18(1): 58-67.

Monneveux, P., Ramírez, D. A. and Pino, M. T. 2013. Drought tolerance in potato (S. tuberosum L.): Can we learn from drought tolerance research in cereals? Plant Sci., 205: 76-86. DOI:

Mukherjee, A., Naskar, S. K., Ray, R. C., Pati, K. and Mukherjee, A. 2015. Sweet potato and taro resilient to stresses: sustainable livelihood in fragile zones vulnerable to climate changes. J. Environ. & Sociobiol., 12(1): 53-64

Munyuli, T., Kalimba, Y., Mulangane, E. K., Mukadi, T. T., Ilunga, M. T. and Mukendi, R. T. 2017. Interaction of the fluctuation of the population density of sweet potato pests with changes in farming practices, climate and physical environments: A 11-year preliminary observation from South-Kivu Province, Eastern DR Congo. Open Agric., 2(1): 495-530. DOI:

Muthamilarasan, M., Singh, N. K. and Prasad, M. 2019. Multi-omics approaches for strategic improvement of stress tolerance in underutilized crop species: A climate change perspective. Adv. Genet., 103: 1-38. DOI:

Nanbol, K. K. and Namo, O. 2019. The contribution of root and root and tuber crops to food security: A review. J. Agric. Sci. Technol., 9(4): 221-233. DOI:

Nedunchezhiyan, M., Jata, S. K., Gowda, K. H., Chauhan, V. B. S. and Bansode, V. V. 2016. Tropical root and tuber crops: Potential future crops under the changing climatic scenario. In Nedunchezhiyan, M., Bansode, V.V., Chauhan,

Nelson, G. C., Rosegrant, M. W., Koo, J., Robertson, R., Sulser, T., Zhu, T., Ringler, C., Msangi, S., Palazzo, A., Batka, M., Magalhaes, M., Santos, V., R, Ewing, M. and Lee, D. 2009. Climate change: Impact on agriculture and costs of adaptation (Vol. 21). Intl Food Policy Res. Inst.

Ntui, V. O., Uyoh, E. A., Ita, E. E., Markson, A. A.,Tripathi, J. N., Okon, N. I., Akpan, M. O., Phillip, J. O., Brisibe, E. A., Ene-Obong, E. E. and Tripathi, L. 2021. Strategies to combat the problem of yam anthracnose disease: Status and prospects. Mol. Plant Pathol., 22(10): 1302-1314. DOI:

Nyakudya, I. W. and Stroosnijder, L. 2011. Water management options based on rainfall analysis for rainfed maize (Zea mays L.) production in Rushinga district, Zimbabwe. Agric. Water Manage., 98(10): 1649-1659. DOI:

O'Brien, P., Kral-O'Brien, K. and Hatfield, J.L. 2021. Agronomic approach to understanding climate change and food security. Agron. J., 113(6): 4616- 4626. DOI:

Okonya, J. S. and Kroschel, J. 2013. Incidence, abundance and damage by the sweet potato butterfly (Acraea acerata Hew.) and the African sweet potato weevils (Cylas spp.) across an altitude gradient in Kabale district, Uganda. Int. J. AgriScience, 3(11): 814-824.

Olaniyan, B. S. and Govender, N. 2023. Responding to climate change: Indigenous knowledge lessons from Nigerian root and tuber farmers. Altern. Int. J. Indigenous Peoples, 19(2): 314- 323. DOI:

Opena, G. B. and Porter, G. A. 1999. Soil management and supplemental irrigation effects on potato: II. Root growth. Agron. J., 91(3): 426-431. DOI:

Orsák, M., Kotíková, Z., Hnilička, F. and Lachman, J. 2021. Effect of drought and waterlogging on saccharides and amino acids content in potato tubers. Plant, Soil Environ., 67(7): 408-416. DOI:

Owusu, K., Obour, P. B., Oppong, R. and Boadi, S. A. 2020. Climate change impacts on staple root and root and tuber crops production: implications for smallholder farmers' livelihoods in rural Ghana. Int. J. Sustain. Soc., 12(3): 253- 265. DOI:

Pachauri, R. K., Allen, M. R., Barros, V. R., Broome, J., Cramer, W., Christ, R. and van Ypserle, J.P. 2014. Climate change 2014: synthesis report. Contribution of working groups I, II and III to the fifth assessment report of the intergovernmental panel on climate change. IPCC. p. 151.

Paliwal, R., Abberton, M., Faloye, B. and Olaniyi, O. 2020. Developing the role of legumes in West Africa under climate change. Curr. Opin. Plant Biol., 56: 242-258. DOI:

Parker, M. L., Low, J. W., Andrade, M., Schulte- Geldermann, E. and Andrade-Piedra, J. 2019. Climate change and seed systems of roots, tubers and bananas: The cases of potato in Kenya and sweetpotato in Mozambique. In: Rosenstock, T., Nowak, A., Girvetz, E. (eds) The Climate-Smart Agriculture Papers. Springer, Cham. doi: 10.1007/978-3-319- 92798-5_9 DOI:

Parry, M. L., Rosenzweig, C., Iglesias, A., Livermore,M. and Fischer, G. 2004. Effects of climate change on global food production under SRES emissions and socio-economic scenarios. Glob. Environ. Change, 14(1): 53-67. DOI:

Patle, G. T., Kumar, M. and Khanna, M. 2020. Climate-smart water technologies for sustainable agriculture: A review. J. Water Clim. Change, 11(4): 1455-1466. DOI:

Porter, G. A., Bradbury, W. B., Sisson, J. A., Opena, G. B. and McBurnie, J. C. 1999. Soil management and supplemental irrigation effects on potato: I. Soil properties, tuber yield, and quality. Agron. J., 91(3): 416-425. DOI:

Pushpalatha, R., Sunitha, S., Mithra, V. S. and Gangadharan, B. 2021. Modelling the yield, water requirement, and water productivity of major tropical tuber crops using FAO-Aqua Crop-A study over the main growing areas of India. J. Trop. Agric., 59(2): 155-161.

Quiroz, R., Ramírez, D. A., Kroschel, J., Andrade- Piedra, J., Barreda, C., Condori, B., Mares, V., Monneveux, P. and Perez, W. 2018. Impact of climate change on the potato crop and biodiversity in its center of origin. Open Agric., 3(1): 273-283. DOI:

Ravi, V., More, S. J., Raju, S., Muthuraj, R. and Suja, G. 2022. Assessment of photosynthetic efficiency of greater yam and white yam subjected to elevated carbon dioxide. S. Afr. J. Bot., 145: 397-404. DOI:

Ravi, V., Pushpaleela, A., Raju, S., Gangadharan, B. and More, S. J. 2020. Evaluation of photosynthetic efficiency of yam bean (Pachyrhizus erosus L.) at saturating photon flux density under elevated carbon dioxide. Physiol. Mol. Biol. Plants, 26: 189-194. DOI:

Ravi, V., Suja, G., Saravanan, R. and More, S. J. 2021. Advances in cassava based multiple cropping systems. Hortic. Rev., 48: 153-232. DOI:

Ravi, V., Vikramaditya, P., Nedunchezhiyan, M., John, K. S., Saravanan, R., Veena, S. S. and Harish, E. R. 2021. Advances in the production technologies of Taro in India. Promotion of underutilized taro for sustainable biodiversity and nutrition security in SAARC countries, 281: 148.

Raymundo, R., Asseng, S., Cammarano, D. and Quiroz, R. 2014. Potato, sweet potato, and yam models for climate change: A review. Field Crops Res., 166: 173-185. DOI:

Recha J, Kapukha M, Wekesa A, Shames S. and Heiner K. 2014. Sustainable agriculture land management practices for climate change mitigation: A training guide for smallholder farmers. Washington, DC. EcoAgriculture Partners. Retrieved from 10568/35643

Reddy, K. M., Kumar, R. and Kiran, S. B. 2023. Impact of climate change on root and tuber crops production and mitigation strategies. In: Adv. Res. Veg. Prod. under a changing climate. Cham: Springer International Publishing. 2: 167-184. DOI:

Remesh, K. R., Byju, G., Soman, S., Raju, S. and Ravi, V. 2019. Future changes in mean temperature and total precipitation and climate suitability of yam (Dioscorea spp.) in major yam-growing environments in India. Curr. Hortic., 7(1): 28-42. DOI:

Rivero, R. M., Mittler, R., Blumwald, E. and Zandalinas, S. I. 2022. Developing climate resilient crops: improving plant tolerance to stress combination. Plant J., 109(2): 373-389. DOI:

Sahoo, U. K., Singh, S. L., Nundanga, L., Nuntluanga, L., Devi, A. S. and Zothanzama, J. 2018. Climate change impacts on forest and its adaptation study in Mizoram. Tech. Rep., Mizoram University, Aizawl, Mizoram, 32.

Sahoo, U. K., Vanlalhluna, P. C. and Singh, S. L. 2018. Indigenous technologies and local climate change adaptation practices around east Kawlchaw watershed, Saiha, Mizoram: A case study. In: J. Zothanzama, B. L. Saitluanga, L. Lalnuntluanga, S. T. Lalzarzovi, and R. Zonunsanga (eds.) Climate Change: Impact, adaptation and response in the Eastern Himalayas. Excel India Publishers, New Delhi, India, pp. 28-39.

Schlenker, W. and Roberts, M. J. 2009. Nonlinear temperature effects indicate severe damages to US crop yields under climate change. Proc. Natl. Acad. Sci. USA, 106(37): 15594-15598. DOI:

Schoeneberger, M., Bentrup, G., De Gooijer, H., Soolanayakanahally, R., Sauer, T., Brandle, J. and Current, D. 2012. Branching out: Agroforestry as a climate change mitigation and adaptation tool for agriculture. J. Soil Water Conserv., 67(5): 128A-136A. DOI:

Shahzad, A., Ullah, S., Dar, A. A., Sardar, M. F., Mehmood, T., Tufail, M. A., Shakoor, A. and Haris, M. 2021. Nexus on climate change: agriculture and possible solution to cope future climate change stresses. Environ. Sci. Pollut. Res. Int., 28(12): 14211-14232. DOI:

Sharma, J. 2013. Climate-resilient horticulture: adaptation and mitigation strategies. In: H. C. P. Singh, N. K. S. Rao, and K. S. Shivashankar (Eds.), India: Springer India. pp. 81-88.

Shrestha, S. 2019. Effects of climate change in agricultural insect pest. Acta Sci. Agric., 3(12): 74-80. DOI:

Skendžić, S., Zovko, M., Živković, I. P., Lešić, V. and Lemić, D. 2021. The impact of climate change on agricultural insect pests. Insects, 12(5): 440. DOI:

Smith, J. 2015. Crops, crop pests and climate change- why Africa needs to be better prepared. CCAFS Working Paper.

Sunitha, S., George, J. and Sreekumar, J. 2014. Productivity of cassava as affected by precision management under humid tropical environment in India. In: XXIX Int. hortic. congress on horticulture: sustaining lives, livelihoods and landscapes (IHC2014): 1118, pp. 17-24. DOI:

Tahat, M., Alananbeh, K. M., Othman, Y. A. and Leskovar, D. I. 2020. Soil health and sustainable agriculture. Sustainability, 12(12): 4859. DOI:

Tardieu, F. 2012. Any trait or trait-related allele can confer drought tolerance: just design the right drought scenario. J. Exp. Bot., 63(1): 25-31. DOI:

Taylor, M., Lebot, V., McGregor, A. and Redden, R. J. 2019. Sustainable production of roots and tuber crops for food security under climate change. John Wiley & Sons, Hoboken, NJ., p.39. DOI:

Tito, R., Vasconcelos, H. L. and Feeley, K. J. 2018. Global climate change increases risk of crop yield losses and food insecurity in the tropical Andes. Glob. Change Biol., 24(2): e592-e602. DOI:

Tittonell, P. and Giller, K. E. 2013. When yield gaps are poverty traps: The paradigm of ecological intensification in African small holder agriculture. Field Crops Res., 143: 76-90. DOI:

Tonnang, H. E., Sokame, B. M., Abdel-Rahman, E. M. and Dubois, T. 2022. Measuring and modelling crop yield losses due to invasive insect pests under climate change. Curr. Opin. Insect Sci., 50: 100873. DOI:

V.B.S. and Mukherjee, A. (eds.). Root and root and tuber crops based integrated farming system: a way forward to address climate change and livelihood improvement. Training Manual, ICAR-Central Root and Tuber Crops Research Institute, Regional Centre, Bhubaneswar, Odisha, India.

Van der Waals, J. E., Krüger, K., Franke, A. C., Haverkort, A. J. and Steyn, J. M. 2013. Climate change and potato production in contrasting South African agro-ecosystems 3. Effects on relative development rates of selected pathogens and pests. Potato Res., 56: 67-84. DOI:

Velumani, R., Raju, S., Gangadharan, B., Nair, P. K. and George, J. 2017. Photosynthetic response of sweet potato (Ipomoea batatas) to photon flux density and elevated carbon dioxide. Indian J. Agric. Sci., 87: 1231-1237. DOI:

Wagg, C., Hann, S., Kupriyanovich, Y. and Li, S. 2021. Timing of short period water stress determines potato plant growth, yield and tuber quality. Agric. Water Manag., 247: 106731. DOI:

Wasaya, A., Zhang, X., Fang, Q. and Yan, Z. 2018. Root phenotyping for drought tolerance: a review. Agron., 8(11): 241. DOI:

Wheeler, T. and Von Braun, J. 2013. Climate change impacts on global food security. Science., 341(6145): 508-513. DOI:

Xalxo, R., Yadu, B., Chandra, J., Chandrakar, V. and Keshavkant, S. 2020. Alteration in carbohydrate metabolism modulates thermotolerance of plant under heat stress. In: Heat stress tolerance in plants: physiological, molecular and genetic perspectives, pp. 77-115. DOI:

Yadav, S. S., Redden, R. J., Hatfield, J. L., Ebert, A.W. and Hunter, D. eds. 2018. Food security and climate change. John Wiley and Sons.

Yadav, S. S., Redden, R. J., Hatfield, J. L., Ebert, A.W., Hunter, D., Taylor, M., Lebot, V., McGregor, A. and Redden, R. J. 2018. Sustainable production of roots and root and tuber crops for food security under climate change. In: Food Security and Climate Change (eds S.S. Yadav, R.J. Redden, J.L. Hatfield, A.W. Ebert and D. Hunter). doi: 10.1002/ 9781119180661.ch15 DOI:

Yimer, S. and Babege, T. 2018. Evaluation of constraints in production of root and tuber crops in Ethiopia: Overview of policy neglected climate resilient food security crops. J. Plant Breed. Crop Sci., 10(8): 210-217.




How to Cite

Saravanan, R., & Gutam, S. (2023). Climate change impacts on tuber crops: vulnerabilities and adaptation strategies. Journal of Horticultural Sciences, 18(1), 1–18.




Most read articles by the same author(s)