Temperature induced biochemical changes and antioxidant activity in mature avocado (persea americana Mill.) fruit during storage
DOI:
https://doi.org/10.24154/jhs.v19i1.2257Keywords:
Antioxidant activity, avocado, biochemical, low temperature, room temperatureAbstract
The present study was carried out to determine the effect of different storage temperatures (5oC, 9oC, 12oC and room temperature (26-32oC) on biochemical and antioxidant properties of two avocado accessions (CHES-HA-I/I and CHES-HA-VII/I). The result showed that titratable acidity, total soluble solids, and protein content decreased, while, fat content increased with the advancement of storage. The higher antioxidant activity was recorded in fruits stored at 9oC in both the accessions. At 5oC, fruits exhibited signs of chilling injury and lower antioxidant activity. Significantly higher phenolic content was found in fruits stored at room temperature. It was observed that both antioxidants and total phenolic content of avocado fruits increased irrespective of storage temperatures. It is, therefore, concluded that unlike other tropical fruits, as the ripening progressed, avocado fruits exhibited major change in biochemical and antioxidant activity.
References
AOAC (2000). Official method, 954.07, Malic acid (Levo and inactive) in fruits and fruit products (12th Ed): 22.070-22.073.
Benzie, I. F., & Strain, J. J. (1996). The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay. Analytical Biochemistry, 239(1), 70-76. doi: 10.1006/abio.1996.0292
Brand-Williams, W., Cuvelier, M., & Berset, C. (1995). Use of a free radical method to evaluate antioxidant activity. LWT-Food Science and Technology, 28(1), 25-30.
Eaks, I. L. (1990). Change in the fatty acid composition of avocado fruit during ontogeny, cold storage and ripening. Acta Horticulturae, 269, 141-152.
Landahl, S., Meyer, M. & Terry, L. (2009). Spatial and temporal analysis of textural and biochemical changes of imported avocado cv. Hass during fruit ripening. Journal of Agricultural and Food Chemistry, 57(15),7039"7047.
Lowry, O. H., Rosebrough, N. J., Farr, A. L., & Randall, R. J. (1951). Protein measurement with the folin phenol reagent. Journal of Biological Chemistry, 193(1), 265–275.
Njus, D., Kelley, P. M., Tu, Y. J, & Schlegel, H. B. (2020). Ascorbic acid: The chemistry underlying its antioxidant properties. Free Radical Biology and Medicine, 159, 37-43. doi:10.1016/j.freeradbiomed.2020.07.013.
Panse, V. G., & Sukhatme, P. V. (1985). Statistical methods for agricultural workers. Indian Council of Agricultural Research Publication, 87-89.
Reblova, Z. (2012). Effect of Temperature on the antioxidant activity of phenolic acids. Czech Journal of Food Sciences, 30( 2), 171-177. doi: 10.17221/57/2011-cjfs
Reddy, V. R., Rao, S., & Shivashankara, K. S. (2011). Comparative effect of 1-methylcyclopropene (1-MCP) and KMNO4 on the total antioxidant capacity, phenols and flavonoids of guava cv. Lucknow-49. Haryana Journal of Horticultural
Sciences, 40, 114-116.
Richard, D., Kefi, K., Barbe, U., Bausero, P., & Visioli, F. (2008). Polyunsaturated fatty acids as antioxidants. Pharmacological Research, 57(6), 451-455. doi: 10.1016/j.phrs.2008.05.002
Singh, R., & Dwivedi U. N. (2008). Effect of ethrel and 1-methylcyclopropene (1-MCP) on antioxidants in mango (Mangifera indica var. Dashehari) during fruit ripening. Food Chemistry, 111, 951–956. doi: 10.1016/j.foodchem.2008.05.011
Singleton, V. L., Orthofer, R., & Lamuela-Raventós, R. M. (1999). Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. In Methods in Enzymology, 299, 152-178. https://doi.org/10.1016/S0076-6879(99)99017-1
Vieites, R. L., Daiuto, E. R., & Fumes, J. G. F. (2012). Antioxidant capacity and postharvest quality of ‘Fuerte’ avocado. Revista Brasileira de Fruticultura, 34(2), 336-348. doi: 10.1590/s0100-29452012000200005
Wills, R. B. H., McGlasson, W. B., Graham, D., Lee, T. H., & Hall, E. G. (1989). Quality evaluation of fruit and vegetables. In: Postharvest - An introduction to the physiology and handling of fruit and vegetables. Van Nostrand Reinhold,
New York. Chap. 8, 88-101.
Zulharmita, Z., Afrina, R., & Rina Wahyuni, R. (2013). Extraction of fatty acids from avocado flesh (Persea americana Mill). Higea Pharmaceutical Journal, 5(1), 201. doi: http://dx.doi.org/10.52689/higea.v5i1.80
Downloads
Published
Issue
Section
License
Copyright (c) 2024 V Kamble, C K Narayana, G Karunakaran, D V Sudhakar Rao, R H Laxman, S Sriram (Author)
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Authors retain copyright. Articles published are made available as open access articles, distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original author and source are credited.
This journal permits and encourages authors to share their submitted versions (preprints), accepted versions (postprints) and/or published versions (publisher versions) freely under the CC BY-NC-SA 4.0 license while providing bibliographic details that credit, if applicable.