Efficient plant regeneration in arrowroot (Maranta arundinacae L.) for mass multiplication and in vitro germplasm conservation
DOI:
https://doi.org/10.24154/jhs.v19i2.2364Keywords:
Arrowroot, germplasm conservation, mass multiplication, plant regenerationAbstract
Arrowroot is a tuber crop gaining global importance as a potential source of high-quality natural starch, cultivated throughout the tropical and subtropical regions of the world. The present study aimed to standardize an efficient micropropagation protocol for rapid mass multiplication and in vitro germplasm conservation of arrowroot. Among the genotypes evaluated, the number of shoots per explant was highest (2.40) in the genotype M7 and was on par with M4 (2.21). Maximum regeneration was observed on the MS medium supplemented with 4.0 mg/l BAP and 0.5 mg/l NAA. The average number of shoots per explant (4.17±1.40), shoot length (3.78±0.37 cm) and number of leaves (6.92±2.23) were recorded maximum on the same medium. Whereas, the addition of TDZ at varying concentrations and combinations to the MS medium was found to be inhibitory to in vitro regeneration. Rooting of regenerated shoots was achieved on MS basal medium devoid of plant growth regulators. The regenerants were successfully acclimatized on a sterile mixture of soil, sand and farmyard manure at a 1:1:1 ratio before transferring to the main field.
References
Arathi, S., Hegde V., Sailekshmi, N., & Koundinya, A.V.V. (2019). An efficient micropropagation protocol for nutritionally rich varieties of sweet potato (Ipomoea batatas L.). Journal of Root Crops, 45(2), 12-18.
Bhanuprakash P., Phanikanth J., Raja K. T., Sadanandam A., & Venkataiah P. (2021). High- frequency plant regeneration and genetic homogeneity assessment of regenerants by molecular markers in turmeric (Curcuma longa L.). In Vitro Cellular & Developmental
Biology-Plant, 58, 169–180. https://doi.org/10.1007/s11627-021-10226-9
Cattarin, T., Myo, M. M. K., Thapanee, S., Umpawa, P., Natthawut W., & Suriyan C. (2022). Shoot meristem culture eliminates bacterial and fungal infections from elite varieties of turmeric (Curcuma longa L.). In Vitro Cellular & Developmental Biology-Plant, 58,146–154. https://doi.org/10.1007/s11627-021-10207-y
Daquinta, M., Brown, K., Silva, J.A.T., & Sagarra, F. (2009). In vitro propagation of arrowroot (Maranta arundinacea L.). International
Journal of Plant Developmental Biology, 3(1), 15-17.
Genene G., Tileye F., & Yayis R. (2023). Replacement of ammonium nitrate by alternative nitrogen sources in MS medium to enhance ginger (Zingiber oûcinale Rosc.) in vitro regeneration. Plant Cell, Tissue and Organ Culture, 154, 89– 95. https://doi.org/10.1007/s11240-023-02513-7
Guilherme, O. D., Branco, F. P., Madeira, N. R., Brito, V. H., Oliveira, C. E., Jadoski, C. J., & Cereda, M. P. (2019). Starch valorization from
corm, tuber, rhizome, and root crops: The Arrowroot (Maranta arundinacea L.) Case. In Maria Teresa Pedrosa Silva Clerici and Marcio
Schmiele (Eds.), Starches for Food Application, pp. 167-222. https://doi.org/10.1016/B978-0-12-809440-2.00005-8
Harmayani, E., Kumalasari, I. D., & Marsono, Y. (2011). Effect of arrowroot (Maranta arundinacea L.) diet on the selected bacterial population and chemical properties of caecal digesta of Sprague Dawley rats. International Research Journal of Microbiology, 2, 278–284.
Ines M., Krunoslav D., Vesna T., Marija V., Ankica P., Zlatko C., Boris P., & Zorica J. (2013). In vitro sterilization procedures for
micropropagation of ‘OBLAČINSKA’ sour cherry. Journal of Agricultural Sciences, 25(2),117-126.
Jyothi, A. N., Sajeev, M. S., & Sreekumar, J. N. (2010). Hydrothermal modifications of tropical tuber starches. 1. Effect of heat-moisture
treatment on the physicochemical, rheological and gelatinization characteristics. Starch, 62, 28-40. https://doi.org/10.1002/star.200900191
Kumalasari, I. D., Eni H., Lily A. L., Sri R., Widya A., Kosuke N., & Takuya S. (2012). Evaluation of immunostimulatory effect of the arrowroot (Maranta arundinacea. L) in vitro and in vivo. Cytotechnology, 64, 131–137. doi: 10.1007/s10616-011-9403-4
Nasirujjaman, K., Salah U., Zaman, S., & Reza, M. A. (2005). Micropropagation of turmeric (Curcuma longa Linn.) through in vitro
rhizome bud culture. Journal of Biological Sciences, 5(4), 490-492.
Rahul S., Manoj K. T., Bhatt D, Tiwari S. Sharma M., Tomar Y. S., & Tripathi N. (2023). Inûuence of plant growth regulators on in vitro
morphogenesis in sprout culture of potato (Solanum tuberosum L.). Potato Research. https://doi.org/10.1007/s11540-023-09640-w
Sayan C., Kumaresh P., Moumita C., Soumendra C., Somnath M., Goutam K. P., Soumen M. & Nandita S. (2020). Conservation and in vitro
propagation of an endangered wild turmeric (Curcuma caesia Roxb.) species from sub- Himalayan terai region of West Bengal. International Journal of Current Microbiology and Applied Sciences, 9(2), 2132-2140. https://doi.org/10.20546/ijcmas.2020.902.242
Shubhangi K., Avinash S., & Prachi T. (2022). Review Article: Arrowroot - gluten-free, multipurpose crops. International Journal for Multidisciplinary Research, 4(4), 2582–2160.
Sousa, G. A. A., Rondon, J. N., Cereda, M. P., Costa, F. A., Targa, V. M. I., & Guilherme, D. O. (2019a). Micropropagation of arrowroot
(Maranta arundinacea). Revista Agraria Academica, 2(3), 10-16. doi: 10.32406/v2n32019/10-16/agrariacad
Souza, D. C., Costa, P. A., Silva, L. F. L., Guerra, T. S., Resende, L. V., & Pereira, J. (2019b). Productivity of rhizomes and starch
quantification in cultures of different vegetative propagules of arrowroot. Journal of Agricultural Science, 11(5), 419-425. doi:10.5539/jas.v11n5p419
Spennemann, D. H. R. (1994). Traditional arrowroot production and utilization in the marshall islands. Journal of Ethnobiology, 14(2), 211-234.
Sudipta J., Asit R., Ambika S., Suprava S., Basudeba K., Pratap C. P., & Sanghamitra N.. (2018). High-frequency clonal propagation of Curcuma angustifolia ensuring genetic ûdelity of micro-propagated plants. Plant Cell, Tissue and Organ Culture, 135, 473–486. https://doi.org/10.1007/s11240-018-1480-z
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Vivek H, Sai Lekshmi N, Asha K I, Koundinya A V V, Sheela M N (Author)
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Authors retain copyright. Articles published are made available as open access articles, distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original author and source are credited.
This journal permits and encourages authors to share their submitted versions (preprints), accepted versions (postprints) and/or published versions (publisher versions) freely under the CC BY-NC-SA 4.0 license while providing bibliographic details that credit, if applicable.