Biochemical quality comparison of forced air dried osmo-dehydrated cashew apple products infused with spice mixture and sugar

Authors

  • P Preethi ICAR-Indian Institute of Horticultural Reseach, Hesaraghatta Lake Post, Bengaluru 560089 Author
  • M Shamsudheen ICAR- Directorate of Cashew Research, Puttur 574202, Dakshina Kannada, Karnataka, India Author
  • S V R Reddy ICAR-Indian Institute of Horticultural Reseach, Hesaraghatta Lake Post, Bengaluru 560089 Author
  • G L Veena ICAR- Directorate of Cashew Research, Puttur 574202, Dakshina Kannada, Karnataka, India Author
  • P Kalal Centurion University of Technology and Management, Paralakhemundi, Odisha. Author
  • R Pandiselvam ICAR-Central Plantation Crops Research Institute, Kasaragod – 671124, Kerala, India Author

DOI:

https://doi.org/10.24154/jhs.v18i2.2015

Keywords:

Bio-chemistry, cashew apple, chew, fig, value addition

Abstract

Cashew apple is a pseudo-fruit available abundantly during harvest seasons (March to July) and majority of them goes as waste because of their perishability and poor shelf life. However, the absence of distinct exocarp and seeds are some of the potential advantages for processing utility. Hence, in the present study, osmo-dehydrated products were prepared from two maturity stages i.e. breaker and ripe stages using sugar, spice mixture and were referred to as cashew fig and chew, respectively. The drying efficiency and product recovery were conquered by cashew chew and fig, respectively. Based on the biochemical and organoleptic qualities, ripe fruits werefound suitable for preparation of chew and fig. The tannin content responsible for acridity got reduced (chew of ripe stage 1.18 to 0.53 mg/g and chew of breaker stage 1.85 to 0.68 mg/g) during the process of osmo- dehydration. Excluding total antioxidant activity, all other biochemical properties were found to be improved compared to their respective controls.

References

Adiga, J. D., Muralidhara, B. M., Preethi, P., & Savadi, S. (2019). Phenological growth stages of the cashew tree (Anacardium occidentale L.) according to the extended BBCH scale. Annals of Applied Biology, 175(2), 246-252. https://doi.org/10.1111/aab.12526

Azoubel, P. M., & Murr, F. E. (2003). Optimisation of osmotic dehydration of cashew apple (Anacardium Occidentale L.) in sugar solutions. Food Science and Technology International, 9(6), 427-433. https://doi.org/10.1177/1082013203040908

Reddy, S. V. R., Singh, R. S., Meena, R., Berwal, M. K., Sarolia, D. K., & Palpandian, P. (2023). Impact of hot water pre-treatments on the drying efficiency and quality of dates cv. Medjool. Horticulturae, 9, 784.

Dixon, G. M., & Jen, J. J. (1977). Changes of sugars and acids of osmovac-dried apple slices. Journal of Food Science, 42(4), 1126-1127. https://doi.org/10.1111/j.1365-2621.1977.tb12684.x

Kaushalya, W. K. D. N. & Weerasooriya, M. K. B. (2017). Development of value added product from cashew apple using dehydration processes. Journal of Scientific and Industrial Research, 76, 105-109.

Kumar, P. S., & Sagar, V. R. (2014). Drying kinetics and physico-chemical characteristics of osmo dehydrated mango, guava and aonla under different drying conditions. Journal of Food Science and Technology, 51(8), 1540-1546. https://doi.org/10.1007/s13197-012-0658-3

Mini, C., & Archana, S. S. (2016). Formulation of osmo-dehydrated cashew apple (Anacardium occidentale L.). Asian Journal of Dairy and Food Research, 35(2), 172-174.

Pravitha, M., Manikantan, M. R., Ajesh Kumar, V., Beegum, S., & Pandiselvam, R. (2021). Optimization of process parameters for the production of jaggery infused osmo-dehydrated coconut chips. LWT-Food Science and Technology, 146, 111441. https://doi.org/10.1016/j.lwt.2021.111441

Preethi, P., Rajkumar, A., Shamsudheen, M., & Nayak, M. G. (2019). Prospects of cashew apple-a compilation report. Technical Bulletin 2, ICAR-DCR, Puttur, pp.1-28.

Runjala, S., & Kella, L. (2017). Cashew apple (Anacardium occidentale L.) therapeutic benefits, processing and product development: An over view. The Pharma Innovation Journal, 6(7), part D, 260.

Singh, D., Bahadur, V., Wilson, D., Ttopno, S. E., & Kerketta, A. (2019). Value addition of aonla (Emblica officinalis) murabba with cardamom. International Journal of Current Microbiology and Applied Sciences, 8(12), 433-438.

Singleton, V. L., & Rossi, J. A. (1965). Colorimetry of total phenolics with phosphomolybdic- Phosphotungstic acid reagents. American Journal of Enology and Viticulture, 16(3), 144-158.

Sobhana, A., Mathew, J., Appukutan, A., & Raghavan, C. M. (2011). Blending of cashew apple juice with fruit juices and spices for improving nutritional quality and palatability. Acta Horticulturae, 1080, 369-375.

Sujayasree, O. J., Tiwari, R. B., Venugopalan, R., Narayan, C. K., Bhuvaneswari S., Ranjitha K., Oberoi, H. S., Shamina, A., Sakthivel T., & Nayaka V. S. K. (2022). Optimization of factors influencing osmotic dehydration of aonla (Phyllanthus emblica L.) segments in salt solution using response surface methodology. Journal of Horticultural Sciences, 17(2), 397-410.

Yadav, A. K. & Singh, S. V. (2014). Osmotic dehydration of fruits and vegetables: a review. Journal of Food Science and Technology, 51(9), 1654-1673. https://doi.org/10.1007/s13197-012-0659-2

Downloads

Published

27-12-2023

Issue

Section

Research Papers

How to Cite

Preethi, P., Shamsudheen, M., Reddy , S. V. R., Veena, G. L., Kalal, P., & Pandiselvam, R. (2023). Biochemical quality comparison of forced air dried osmo-dehydrated cashew apple products infused with spice mixture and sugar. Journal of Horticultural Sciences, 18(2). https://doi.org/10.24154/jhs.v18i2.2015

Similar Articles

101-110 of 122

You may also start an advanced similarity search for this article.