Effect of Organic Cultivation of Capsicum annuum L. on Soil Microbial Properties under Open-Field and Shade-House Conditions
DOI:
https://doi.org/10.24154/jhs.v8i1.348Keywords:
Capsicum, Organics, Shade-House, Soil Microbes, Dehydrogenase ActivityAbstract
Two bell pepper (Capsicum annuum L.) varieties, viz., California Wonder and Gangavati Local, were raised under nine completely organic nutrient sources, along with recommended package of practices, and, under completely inorganic nutrient sources. Irrespective of the variety and growing environment, there was substantial increase in total bacterial count (22.97% and 24.98%), population of fungi (20.23% and 20.23%), actinomycetes (36.89% and 36.83%) and mycorrhiza (44.63% and 29.40%) in open-field and shade-house conditions, respectively, in all the nutrient combinations where organic sources were used, compared to the inorganic treatment. All organic nutrient sources used were found to be similar in their effect on soil microbes.
References
Anonymous. 2005. Horticulture package of practices, University of Agricultural Sciences, Dharwad Karnataka, India
Burns, R.G. 1982. Enzyme activity in soil: location and a possible role in microbial ecology. Soil Biol. Biochem., 14:423-427
Cassida, L.E., Klein, D.A. and Santoro, T. 1964. Soil dehydrogenase activity. Soil Sci., 98:371-376
Chithesh, C. 2005. Studies on use of organics in tomato (Lycopersicon esculentum Mill.) production. M.Sc (Hort.) Thesis, University of Agricultural Sciences, Dharwad, Karnataka, India
Colvan, S.R., Syers, J.K. and O’donnell, A.G. 2001. Effect of long-term fertilizer use on acid and alkaline phosphomonoesterase and phosphodiesterase activities in managed grassland. Biol. Ferti. Soils, 34:258-263
Gerdemann, J.W. and Nicolson, J.H. 1963. The spores of mycorrhizal Endogone species extracted from soil by wet sieving and decanting. Trans. Br. Mycol. Soc., 46:235-244
Gunadi, B., Blount, C. and Edwards, C.A. 1999. The growth and fecundity of Eisenia fetida (Savigny) in cattle solids pre-composted for different periods. Pedobiologia, 46:15-33
Lampkin, N. 1990. In: Organic Farming, Ipswich, U.K. Press Books, pp. 701-710
Masciandaro, G., Ceccanti, B., Ronchi, V. and Bauer, C. 2000. Kinetic parameters of dehydrogenase and inorganic fertilizers. Biol. Fert. Soils, 32:579-587
Nandani, T. 2006. Effect of organic, conventional and integrated form of nutrient management systems on growth, yield and quality of tomato (Lycopersicon esculentum Mill). M. Sc. (Hort.) Thesis, University of Agricultural Sciences, Dharwad, Karnataka, India
Panse, V.G. and Sukhatme, P.U. 1967. Statistical Methods for Agricultural Workers, Indian Council of Agricultural Research, New Delhi, India, pp. 100- 174
Pathak, R.K. and Ram, R.A. 2003. Organic farming systems prevalent in India. National Symposium on Organic Farming in Horticulture for Sustainable Production, 29-30 August, Central Institute of Subtropical Horticulture, Lucknow, India, pp. 1-2
Tabatabai, A. 1994. Soil enzymes. In: Weaver, R.W., Angle, J.S. and Bottomley, P.S. (Eds.), Methods of Soil Analysis, Part 2. Microbiological and biochemical properties, SSSA, Madison, USA, pp.775-833
Downloads
Published
Issue
Section
License
Copyright (c) 2013 Vasant M Ganiger, J C Mathad, M B Madalageri, N S Hebasur, G Bhuvaneswari (Author)
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Authors retain copyright. Articles published are made available as open access articles, distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original author and source are credited.
This journal permits and encourages authors to share their submitted versions (preprints), accepted versions (postprints) and/or published versions (publisher versions) freely under the CC BY-NC-SA 4.0 license while providing bibliographic details that credit, if applicable.