In silico mining of banana circular RNAs in response to biotic andabiotic stress: Classification and their distribution on genome

Authors

  • D Elangovan ICAR- Indian Institute of Horticultural Research, Bengaluru , Indian Institute of Horticultural Research image/svg+xml Author
  • M Mathiazhagan ICAR- Indian Institute of Horticultural Research, Bengaluru , Indian Institute of Horticultural Research image/svg+xml Author
  • R. H Laxman ICAR- Indian Institute of Horticultural Research, Bengaluru , Indian Institute of Horticultural Research image/svg+xml Author
  • K V Ravishankar ICAR -Indian Institute of Horticultural Research, Bengaluru,560089 , Indian Institute of Horticultural Research image/svg+xml Author

DOI:

https://doi.org/10.24154/jhs.v20i2.4097

Keywords:

Banana, biotic and abiotic stress, circular RNA, non-coding RNAs, transcriptome

Abstract

Banana (Musa spp.) is highly susceptible to a range of abiotic and biotic stresses, leading to significant reductions in yield and productivity. Recent advances in molecular biology have highlighted the critical roles of non-coding RNAs in the regulation of gene expression and stress adaptation in plants. Among these, circular RNAs (circRNAs)—a class of covalently closed, stable RNA molecules—have emerged as important regulators of diverse biological processes, including plant stress responses. In the present study, circRNAs were systematically identified from transcriptome datasets of Musa acuminata subjected to various abiotic (cold, salt, osmotic and drought) and biotic (Mycosphaerella sp. and Fusarium sp.) stress conditions. A total of 1,114 circRNAs were identified under abiotic stress and 497 circRNAs under biotic stress. Notably, a high proportion of these circRNAs originated from intergenic regions, accounting for 80.7% (900) and 90.74% (451) of total circRNAs under abiotic and biotic stress, respectively. Chromosomal distribution analysis of abiotic and biotic circRNAs showed statistically significant variation across the 11 chromosomes of banana as determined by the Kolmogorov–Smirnov (K–S) test (0.75). These findings provide a foundational resource for understanding the landscape of stress-responsive circRNAs in banana. Further functional characterization and validation studies
are warranted to elucidate their precise regulatory roles in stress tolerance mechanisms.

Downloads

Download data is not yet available.

Author Biographies

  • D Elangovan, ICAR- Indian Institute of Horticultural Research, Bengaluru, Indian Institute of Horticultural Research

    Young Professional-II, Division of Basic Sciences

  • M Mathiazhagan, ICAR- Indian Institute of Horticultural Research, Bengaluru, Indian Institute of Horticultural Research

    Technical Officer, Division of Basic Sciences

  • R. H Laxman, ICAR- Indian Institute of Horticultural Research, Bengaluru, Indian Institute of Horticultural Research

    Principal Scientist, Division of Basic Sciences

  • K V Ravishankar, ICAR -Indian Institute of Horticultural Research, Bengaluru,560089, Indian Institute of Horticultural Research

    Principal Scientist, Division of Basic Sciences

References

Chu, Q., Bai, P., Zhu, X., Zhang, X., Mao, L., Zhu, Q. H., Fan, L., & Ye, C. Y. (2020). Characteristics of plant circular RNAs. Briefings in Bioinformatics, 21(1), 135–143. https://doi.org/10.1093/bib/bbz037

Guo, L., Han, L., Yang, L., Zeng, H., Fan, D., Zhu, Y., … Huang, J. (2014). Genome and transcriptome analysis of the fungal pathogen Fusarium oxysporum f. sp. cubense causing banana vascular wilt disease. PLoS ONE, 9(4), e95543. https://doi.org/10.1371/journal.pone.0095543

Hong, Y. H., Meng, J., Zhang, M., & Luan, Y. S. (2020). Identification of tomato circular RNAs responsive to Phytophthora infestans. Gene, 746, 144652. https://doi.org/10.1016/j.gene.2020.144652

Hu, W., Ding, Z., Tie, W., Yan, Y., Liu, Y., Wu, C., … Jin, Z. (2017). Comparative physiological and transcriptomic analyses provide integrated insight into osmotic, cold, and salt stress tolerance mechanisms in banana. Scientific Reports, 7(1), 43007. https://doi.org/10.1038/srep43007

Ijaz, U., Ali, M. A., Nadeem, H., Tan, L., & Azeem, F. (2020). RNA world and heat stress tolerance in plants. In S. H. Wani & V. Kumar (Eds.), Heat stress tolerance in plants: Physiological, molecular and genetic perspectives (pp. 167–187). Wiley. https://doi.org/10.1002/9781119432401.ch8

Jeck, W. R., & Sharpless, N. E. (2014). Detecting and characterizing circular RNAs. Nature Biotechnology, 32, 453–461. https://doi.org/10.1038/nbt.2890

Jeck, W. R., Sorrentino, J. A., Wang, K., Slevin, M. K., Burd, C. E., Liu, J., Marzluff, W. F., & Sharpless, N. E. (2013). Circular RNAs are abundant, conserved, and associated with ALU repeats. RNA, 19(2), 141–157. https://doi.org/10.1261/rna.035667.112

Kotari, P., Swarupa, V., & Ravishankar, K. V. (2016). Genomics of biotic stress tolerance in banana. In S. Mohandas & K. Ravishankar (Eds.), Banana: Genomics and transgenic approaches for genetic improvement (pp. 61–75). Springer. https://doi.org/10.1007/978-981-10-1585-4_5

Meng, X., Hu, D., Zhang, P., Chen, Q., & Chen, M. (2019). CircFunBase: A database for functional circular RNAs. Database, 2019, baz003. https://doi.org/10.1093/database/baz003

Muthusamy, M., Uma, S., Backiyarani, S., Saraswathi, M. S., & Chandrasekar, A. (2016). Transcriptomic changes of drought-tolerant and sensitive banana cultivars exposed to drought stress. Frontiers in Plant Science, 7, 1609. https://doi.org/10.3389/fpls.2016.01609

Noar, R. D., & Daub, M. E. (2016). Transcriptome sequencing of Mycosphaerella fijiensis during association with Musa acuminata reveals candidate pathogenicity genes. BMC Genomics, 17(1), 690. https://doi.org/10.1186/s12864-016-3031-5

Salzman, J., Chen, R. E., Olsen, M. N., Wang, P. L., & Brown, P. O. (2013). Cell-type specific features of circular RNA expression. PLoS Genetics, 9(9), e1003777. https://doi.org/10.1371/journal.pgen.1003777

Sampangi-Ramaiah, M. H., Ravishankar, K. V., & Rekha, A. (2019). Long non-coding RNAs in banana: Prediction, mapping and comparative studies using Musa balbisiana and Musa acuminata transcriptome. Trees, 33(2), 359–369. https://doi.org/10.1007/s00468-018-1784-1

Starke, S., Jost, I., Rossbach, O., Schneider, T., Schreiner, S., Hung, L. H., & Bindereif, A. (2015). Exon circularization requires canonical splice signals. Cell Reports, 10(1), 103–111. https://doi.org/10.1016/j.celrep.2014.12.002

Suzuki, H., & Tsukahara, T. (2014). A view of pre-mRNA splicing from RNase R-resistant RNAs. International Journal of Molecular Sciences, 15, 9331–9342. https://doi.org/10.3390/ijms15069331

Vidya, S. M., Kumar, H. V., Bhatt, R. M., Laxman, R. H., & Ravishankar, K. V. (2018). Transcriptional profiling and genes involved in acquired thermotolerance in banana: A non-model crop. Scientific Reports, 8(1), 10683. https://doi.org/10.1038/s41598-018-28977-1

Wang, D., Gao, Y., Sun, S., Li, L., & Wang, K. (2022). Expression characteristics of apple circular RNAs in roots, phloem, leaves, flowers, and fruits. Genes, 13(4), 712. https://doi.org/10.3390/genes13040712

Yang, X., Liu, Y., Zhang, H., Wang, J., Zinta, G., Xie, S., … Nie, W. F. (2020). Genome-wide identification of circular RNAs in response to low-temperature stress in tomato leaves. Frontiers in Genetics, 11, 591806. https://doi.org/10.3389/fgene.2020.591806

Zhang, J., Hao, Z., Yin, S., & Li, G. (2020). GreenCircRNA: A database for plant circRNAs that act as miRNA decoys. Database, 2020, baaa039. https://doi.org/10.1093/database/baaa039

Zhang, P., Fan, Y., Sun, X., Chen, L., Terzaghi, W., Bucher, E., Li, L., & Dai, M. (2019). A large-scale circular RNA profiling reveals universal molecular mechanisms responsive to drought stress in maize and Arabidopsis. The Plant Journal, 98(4), 697–713. https://doi.org/10.1111/tpj.14267

Zhang, P., Li, S., & Chen, M. (2020). Characterization and function of circular RNAs in plants. Frontiers in Molecular Biosciences, 7, 91. https://doi.org/10.3389/fmolb.2020.00091

Downloads

Published

31-12-2025

Data Availability Statement

None

Issue

Section

Research Papers

How to Cite

Elangovan, D., Mathiazhagan, M., Laxman, R. H., & Ravishankar, K. V. (2025). In silico mining of banana circular RNAs in response to biotic andabiotic stress: Classification and their distribution on genome. Journal of Horticultural Sciences, 20(2). https://doi.org/10.24154/jhs.v20i2.4097

Similar Articles

1-10 of 140

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)

1 2 > >>