Effects of Cucumis and Cucurbita Rootstocks on Vegetative Traits, Yield and Quality in 'Tainan No. 1' Cucumber
DOI:
https://doi.org/10.24154/jhs.v8i1.334Keywords:
Cucumis, Cucurbita, Cucumber, Graft, Soil-Borne DiseasesAbstract
'Tainan No.1' cucumber, an F1 hybrid, is powdery-mildew resistant and is, therefore, fit for greenhouse-culture. Soil-borne diseases in cucurbits have gained increasing importance with intensive cultivation of these crops. In the present experiment, cucumber cv. 'Tainan No. 1' was grafted onto two rootstocks, viz., Cucumisand Cucurbita. Nongrafted cucumber plants were used as the Control. Results revealed that both kinds of grafted plants had similar graft-survival rate, and, better vegetative growth than non-grafted ones; however, between the two rootstocks, grafted plants did not differ in vegetative growth or yield. Further, plants grafted on Cucumis had significant effect on fruit quality. In is therefore recommended that grafting procedure in cucumber greenhouse-culture can be practiced on Cucumis.
References
Ahn, S.J., Y.J., Chung, G.C., Cho, B.H., Suh, S.R. 1999. Physiological responses of grafted cucumber leaves and rootstock root affected by low root temperature. Sci. Hort., 81:397-408
Bletsos, F.A., Thanassoulopoulos, C., Roupakias, D. 2003. Effect of grafting on growth, yield and Verticillium wilt of eggplant. Hort. Sci., 38:183-186
Davis, A.R., P. Perkins-Veazie, R. Hassell, A. Levi, S.R. King and X. Zhang. 2008. Grafting effects on vegetable quality. HortSci., 43:1670-1672
Kamiya, E. and S. Tamura. 1964. Studies on grafting in muskmelon [in Japanese]. Bull. Shizuoka Pref. Agri. Exptl. Stn., 9:79–83
King, S.R., Angela R. Davis, Xingping Zhang and Kevin Crosby. 2010. Genetics, breeding and selection of rootstocks for Solanaceae and Cucurbitaceae. Sci Hort., 127:106-111
Lee, J.M. and M. Oda. 2003. Grafting of herbaceous vegetable and ornamental crops. Hort Rev., 28:61-124
Lee, J.M, 1994. Cultivation of grafted vegetables I. Current status, grafting methods and benefits. Hortl. Sci., 29:240-244
Marukawa, S. and Takatsu, I. 1969. Studies on the selection of Cucurbita spp. as cucumber stock. 1. Compatibility, ability to tolerate low-temperature conditions and yield of black prickly cucumber. Bull. Ibaraki Hort. Expt. Stn., 3:11–18
Miguel, A., J.V. Morata, A.S. Bautista, C. Baixauli, V. Cibola, B. Pascual, S. Lopez and J.L. Guardioal. 2004. The grafting of triploid watermelon is an advantageous alternative to soil fumigation by methyl bromide for control of Fusarium wilt. Sci. Hort., 103:9-17
Muramatsu, Y. 1981. Problems on vegetable grafting [in Japanese]. Shisetu Engei., 53:46–52
Oda, M. 1999. Grafting of vegetables to improve greenhouse production. Food & Fertilizer Technology Center, Extn. Bull., No.80
Rivero, R.M., Ruiz, J.M. and Romero, L., 2003. Role of grafting in horticulture plants under stress condition. Food Agri. Envir., 1:70-74
Sakata, Y., Ohara, T. and Sugiyama, M. 2008. The history of melon and cucumber grafting in Japan. Acta Hort., 767:217-218
Salehi, R., A. Kashi, S.G. Lee, Y.C. Hou, J.M. Lee, M. Babalar and M. Delshad. 2009. Assessing the survial and growth performance of Iranian melons to grafting onto Cucurbita rootstocks. Korean J. Hortl. Sci.Tech., 27:1-6
Takahashi, K. 1984. Injury by continuous cropping in vegetables: Various problems in the cultivation using grafted plants. Yasaishikenjo Kenkyu Shiryo., 18:87-89
Traka-Mavrona, E., M.K. Soutiriou and T. Prista. 2000. Response of squash (Cucurbita spp.) as rootstock for melon (Cucumis melo). Sci. Hort., 83:335-362
Yamasaki, A., M. Yamashita, and S. Furuya. 1994. Mineral concentrations and cytokinin activity in the xylem exudate of grafted watermelons as affected by rootstocks and crop load. J. Jap. Soc. Hortl. Sci., 62:817–826
Zhu, J., Z.L. Bie, Y. Huang and X.Y. Han. 2006. Effects of different grafting methods on the grafting work efficiency and growth of cucumber seedlings. China Veg., 9:24–25
Zijlstra, S., Groot, S.P.C. and Jansen, J. 1994. Genotypic variation of rootstocks for growth and production in cucumber: Possibilities for improving by plant breeding. Sci. Hort., 56:185-196
Downloads
Published
Issue
Section
License
Copyright (c) 2013 Hsiu- Fung Chao, Yung- Fu Yen (Author)
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Authors retain copyright. Articles published are made available as open access articles, distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original author and source are credited.
This journal permits and encourages authors to share their submitted versions (preprints), accepted versions (postprints) and/or published versions (publisher versions) freely under the CC BY-NC-SA 4.0 license while providing bibliographic details that credit, if applicable.