Evaluation of antirrhinum genotypes for horticultural and phyto-chemical traits

Authors

  • R KUMAR ICAR-IARI, RS, Katrain , Indian Agricultural Research Institute image/svg+xml Author
  • M R Dhiman ICAR-IARI, RS, Katrain , Indian Agricultural Research Institute image/svg+xml Author
  • S Kumar ICAR-IARI, RS, Katrain , Indian Agricultural Research Institute image/svg+xml Author
  • C Prakash ICAR-IARI, RS, Katrain , Indian Agricultural Research Institute image/svg+xml Author
  • V Kumar Punjab Agricultural University image/svg+xml , University of the Punjab image/svg+xml Author

DOI:

https://doi.org/10.24154/jhs.v20i2.3330

Keywords:

Antioxidant, Antirrhinum, flavoniods, FTIR, phenolic

Abstract

Snapdragon (Antirrhinum majus L.) is a commercially prized specialty cut flower in the international market. Among the inbred lines created, KTANT-2, KTANT-5, KTANT-6, KTANT-8, and KTANT-11 exhibited suitability for different horticultural traits. Total phenolic content in different genotypes ranged from 4.81 to 8.63 gallic acid equivalents (GAE)/100 g dry weight, while, total flavonoid content varied from 56.32 to 164.18 quercetin equivalents (mg/100 g QE). Antioxidant potential was determined through FRAP, DPPH, and MCA analysis. Additionally, FTIR analysis was conducted to identify the presence of various functional groups and compounds.

Downloads

Download data is not yet available.

Author Biographies

  • M R Dhiman, ICAR-IARI, RS, Katrain, Indian Agricultural Research Institute

    ICAR-Indian Agricultural Research Institute, Regional Station, Katrain, Kullu, Himachal Pradesh, India-175129

  • S Kumar, ICAR-IARI, RS, Katrain, Indian Agricultural Research Institute

    ICAR-Indian Agricultural Research Institute, Regional Station, Katrain, Kullu, Himachal Pradesh, India-175129

  • C Prakash, ICAR-IARI, RS, Katrain, Indian Agricultural Research Institute

    ICAR-Indian Agricultural Research Institute, Regional Station, Katrain, Kullu, Himachal Pradesh, India-175129

  • V Kumar, Punjab Agricultural University, University of the Punjab

    Food Technologists, Department of Food Science and Technology, Punjab Agricultural University Ludhiana, Punjab, India-141004

References

Alvarez-Parrilla, E., De La Rosa, L. A., Martínez, N. R., & González-Aguilar, G. A. (2019). Total phenols and antioxidant activity of commercial and wild mushrooms from Chihuahua, Mexico. Ciencia y Tecnología Alimentaria, 5(5), 329–334. https://doi.org/10.1080/11358120709487708

Ayob, O., Hussain, P. R., Suradkar, P., Naqash, F., Rather, S. A., Joshi, S., & Ahmad Azad, Z. A. (2021). Evaluation of chemical composition and antioxidant activity of Himalayan red chilli varieties. LWT – Food Science and Technology, 146, 111413. https://doi.org/10.1016/j.lwt.2021.111413

Benvenuti, S., & Mazzoncini, M. (2021). The biodiversity of edible flowers: Discovering new tastes and new health benefits. Frontiers in Plant Science, 11, 569499. https://doi.org/10.3389/fpls.2020.569499

Brand-Williams, W., Cuvelier, M. E., & Berset, C. (1995). Use of a free radical method to evaluate antioxidant activity. LWT – Food Science and Technology, 28(1), 25–30. https://doi.org/10.1016/S0023-6438(95)80008-5

Chavan, J. J., Jagtap, U. B., Gaikwad, N. B., Dixit, G. B., & Bapat, V. A. (2013). Total phenolics, flavonoids and antioxidant activity of Saptarangi (Salacia chinensis L.) fruit pulp. Journal of Plant Biochemistry and Biotechnology, 22(4), 409–413. https://doi.org/10.1007/s13562-012-0169-3

Chen, N. H., & Wei, S. (2017). Factors influencing consumers’ attitudes towards the consumption of edible flowers. Food Quality and Preference, 56, 93–100. https://doi.org/10.1016/j.foodqual.2016.10.001

Fernandes, L., Casal, S., Pereira, J. A., Pereira, E. L., Saraiva, J. A., & Ramalhosa, E. (2019). Physicochemical, antioxidant and microbial properties of crystallized pansies (Viola × wittrockiana) during storage. Food Science and Technology International, 25(6), 472–479. https://doi.org/10.1177/1082013219833234

Jang, M., Hwang, I., Hwang, B., & Kim, G. (2020). Anti-inflammatory effect of Antirrhinum majus extract in lipopolysaccharide-stimulated RAW 264.7 macrophages. Food Science & Nutrition, 8, 5063–5070. https://doi.org/10.1002/fsn3.1805

Kiranmai, M., Mahendra Kumar, C. B., & Ibrahim, M. (2011). Comparison of total flavonoid content of Azadirachta indica root bark extracts prepared by different methods of extraction. Research Journal of Pharmaceutical, Biological and Chemical Sciences, 2(3), 254–261.

Lewis, M., Stock, M., Black, B., & Drost, D. (2021). Improving snapdragon cut flower production through high tunnel season extension, transplant timing, and cultivar selection. HortScience, 56(10), 1206–1212. https://doi.org/10.21273/HORTSCI15910-21

Lian, Z., Nguyen, C. D., Wilson, S., Chen, J., Gong, H., & Huo, H. (2020). An efficient protocol for Agrobacterium-mediated genetic transformation of Antirrhinum majus. Plant Cell, Tissue and Organ Culture, 142, 527–536. https://doi.org/10.1007/s11240-020-01877-4

Lim, T. K. (2014). Antirrhinum majus. In Edible medicinal and non-medicinal plants (Vol. 8, pp. 633–639). Springer.

Lysiak, G. P. (2022). Ornamental flowers grown in human surroundings as a source of anthocyanins with high anti-inflammatory properties. Foods, 11(7), 948. https://doi.org/10.3390/foods11070948

Mlcek, J., & Rop, O. (2011). Fresh edible flowers of ornamental plants – A new source of nutraceutical foods. Trends in Food Science & Technology, 22(10), 561–569. https://doi.org/10.1016/j.tifs.2011.04.006

Poonam, K., Ujala, & Bhavya, B. (2021). Phytochemicals from edible flowers: Opening a new arena for healthy lifestyle. Journal of Functional Foods, 78, 104375. https://doi.org/10.1016/j.jff.2021.104375

Rop, O., Mlcek, J., Jurikova, T., Neugebauerova, J., & Vabkova, J. (2012). Edible flowers—A new promising source of mineral elements in human nutrition. Molecules, 17, 6672–6683. https://doi.org/10.3390/molecules17066672

Sekerci, A. D., Yetisir, D., Yildirim, Z., & Gulsen, O. (2017). Genetic diversity analysis in snapdragon (Antirrhinum majus L.) using morphological and molecular methods. Current Trends in Natural Sciences, 6(12), 68–74.

Seo, J., Lee, J., Yang, H. Y., & Ju, J. (2020). Antirrhinum majus L. flower extract inhibits cell growth and metastatic properties in human colon and lung cancer cell lines. Food Science & Nutrition, 8, 6259–6268. https://doi.org/10.1002/fsn3.1924

Singleton, V. L., Orthofer, R., & Lamuela-Raventós, R. M. (1999). Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin–Ciocalteu reagent. Methods in Enzymology, 299, 152–178. https://doi.org/10.1016/S0076-6879(99)99017-1

Stuart, B. H., & Thomas, P. S. (1995). Xylene swelling of polycarbonate studied using Fourier transform Raman spectroscopy. Spectrochimica Acta Part A: Molecular Spectroscopy, 51(12), 2133–2137. https://doi.org/10.1016/0584-8539(95)01457-7

Takahashi, J. A., Rezende, F. A. G. G., Moura, M. A. F., Dominguete, L. C. B., & Sande, D. (2020). Edible flowers: Bioactive profile and its potential to be used in food development. Food Research International, 129, 108868. https://doi.org/10.1016/j.foodres.2019.108868

Downloads

Published

31-12-2025

Data Availability Statement

None

Issue

Section

Research Papers

How to Cite

KUMAR, R., Dhiman, M. R., Kumar, S., Prakash, C., & Kumar, V. (2025). Evaluation of antirrhinum genotypes for horticultural and phyto-chemical traits. Journal of Horticultural Sciences, 20(2). https://doi.org/10.24154/jhs.v20i2.3330

Similar Articles

1-10 of 39

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)