Screening for resistance to downy mildew disease [Pseudoperonospora cubensis (Berk. and Curt.) Rostov.] in Cucumber (Cucumis sativus L.)
DOI:
https://doi.org/10.24154/jhs.v19i1.2183Keywords:
Artificial screening technique, downy mildew, per cent disease indexAbstract
Downy mildew, a foliar disease caused by the oomycete Pseudoperonospora cubensis (Berk. and Curt.) Rostov, is one of the most destructive disease of cucumber (Cucumis sativus L.). Moderately resistant cultivars are available, but yield losses are high without the use of fungicides, therefore, higher levels of resistance are required to reduce the use of fungicides. Therefore, in the present study, 12 advance breeding lines along with susceptible check of cucumber were screened against downy mildew disease under natural field condition and artificial inoculation through seedling assay technique. The results confirmed that three lines namely IIHR-177-1-1-S7, IIHR-82-1-S6 and IIHR-81-1-S6 were found to be resistant with <10 per cent disease index (PDI) and significantly outperformed against check var. Swarna Agethi for yield and quality traits. These high yielding resistant lines can be utilized as one of the parents for the development of downy mildew resistant hybrids/ varieties.
References
Bommesh, J. C., Pitchaimuthu, M., Sadashiva, A. T., Sriram, S., Varalakshmi, B., & Ravishankar, K. V. (2017). Identification and confirmation of downy mildew (Pseudoperonospora cubensis Berk. & Curt.) resistance sources in cucumber (Cucumis sativus L.) Indian Phytopathology, 71(3), 337–348. http://doi.org/10.1007/s42360-018-0061-8
Call, A. D., Criswell, A. D., Wehner, T. C., Klosinska, U., & Kozik, E .U. (2012b). Screening cucumber for resistance to downy mildew caused by Pseudoperonospora cubensis (Berk. & Curt.) Rostov. Crop Science, 52, 577-592. https://doi.org/10.2135/cropsci2011.06.0296
Colucci, S. J., & Holmes, G. J. (2010). Downy mildew of cucurbits. Plant Health Instructor. http://dx.doi.org/10.1094/PHI-I-2010-0825-01
Dhillon, N. P. S., Pushpinder, P. S., & Ishiki, K. (1999). Evaluation of landraces of cucumber (Cucumis sativus L.) for resistance to downy mildew (Pseudoperonospora cubensis). Plant Genetic Resources Newsletter, 119, 5961.
Eckardt, N. A. (2004). Aminotransferases confer ‘Enzymatic resistance’ to downy mildew in melon. Plant Cell, 16(1), 1-3. https://doi.org/10.1105/tpc.160110
EI-Nagdy, M. A., & Abdel-Hafez, S. l. (1990). Occurrence of zoosporic and terrestrial fungi in some ponds of Kharga Oases, Egypt. Journal of Basic Microbiology, 30(4), 233-240. https://doi.org/10.1002/jobm.3620300404
FAOSTAT (2021). FAO statistical yearbook. Food and agriculture organization of the united nations, Rome.
Galvan, G. (2010). Screening onions & related species for resistance to Anthracnose (Colletotrichum gloeosporioides). In IAEA (Eds.), Mass screening techniques for selecting crops resistant to disease (pp 309-319). International Atomic Energy Agency.
Holmes, G. J., & Thomas, C. E. (2006). The history and reemergence of cucurbit downy mildew (Abstr.). Phytopathology, 99, S171.
Innark, P., Ratanachan, T., Khanobdee, C., Samipak, S., & Jantasuriyarat, C. (2014). Downy mildew resistant/susceptible cucumber germplasm (Cucumis sativus L.) genetic diversity assessment using ISSR markers. Crop Protection, 60, 56-61. https://doi.org/10.1016/j.cropro.2014.03.003
Jenkins, S. F., & Wehner, T. C. (1983). A system for the measurement of foliar diseases in cucumbers. Cucurbit Genetics Cooperative Report, 6, 10-12.
Kibria, G., Yousuf Haroon, A. K., Nugegoda, D., & Rose, G. (2010). Climate change and chemicals. Environmental and biological aspects. New India Publishing Agency, Pitam Pura, New Delhi.
Komarek, M., Cadkova, E., Chrastny, V., Bordas, F., & Bollinger, J. C. (2010). Contamination of vineyard soils with fungicides: A review of environmental and toxicological aspects. Environment International, 36(1), 138–151. https://doi.org/10.1016/j.envint.2009.10.005
Lebeda, A. (1992) Susceptibility of accessions of Cucumis sativus to Pseudoperonospora cubensis. Tests of agrochemicals and cultivars No. 13. Annals of Applied Biology, 102-103.
Lebeda, A., & Urban, J. (2007). Temporal changes in pathogenicity and fungicide resistance in Pseudoperenospora cubensis populations. Acta Horticulturae, 731, 327-336. http://doi.org/10.17660/ActaHortic.2007.731.44
Pitchaimuthu, M., Souravi, K., Ganeshan, G., Kumar, G. S., & Pushpalatha, R. (2012). Identification of sources of resistance to powdery and downy mildew diseases in cucumber [Cucumis sativus (L.)]. Pest Management in Horticultural Ecosystems, 18(1), 105-107.
Ranjan, P., Gangopadhay, K. K., Bag, M. K., Roy, A., Srivastava, R., Bhardwaj, R., & Dutta, M. (2015). Evaluation of cucumber (Cucumis sativus L.) germplasm for agronomic traits and disease resistance and estimation of genetic
variability. Indian Journal of Agricultural Sciences, 85(2), 234–239. https://doi.org/10.56093/ijas.v85i2.46516
Reddy, N. S. (2002). Biochemical mechanism of downy mildew resistance in musk melon (Cucumis melo L.) caused by Pseudopero- nospora cubensis (Berk and Curt) Rostow. M.Sc. Thesis, University of Agricultural Sciences, Bangalore, p 21.
Downloads
Published
Issue
Section
License
Copyright (c) 2024 M Pitchaimuthu , G M Sandeep Kumar, K V Ravishankar, R Hegde, L T Chaithra (Author)
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Authors retain copyright. Articles published are made available as open access articles, distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original author and source are credited.
This journal permits and encourages authors to share their submitted versions (preprints), accepted versions (postprints) and/or published versions (publisher versions) freely under the CC BY-NC-SA 4.0 license while providing bibliographic details that credit, if applicable.