Agrobacterium-mediated transformation of bell pepper (Capsicum annuum L.)using a binary vector system

Authors

  • M Mangal Indian Agricultural Research Institute image/svg+xml Author
  • L C Sushmitha ICAR-Indian Agricultural Research Institute, New Delhi , Indian Agricultural Research Institute image/svg+xml Author
  • A Srivastava ICAR-Indian Agricultural Research Institute, New Delhi , Indian Agricultural Research Institute image/svg+xml Author
  • R K Yadav ICAR-Indian Agricultural Research Institute, New Delhi , Indian Agricultural Research Institute image/svg+xml Author
  • A Roy ICAR-Indian Agricultural Research Institute, New Delhi , Indian Agricultural Research Institute image/svg+xml Author
  • N Saini ICAR-National Institute for Plant Biotechnology, New Delhi , National Research Centre on Plant Biotechnology image/svg+xml Author

DOI:

https://doi.org/10.24154/jhs.v20i2.4310

Keywords:

Agrobacterium, California Wonder, Capsicum, regeneration, transformation

Abstract

This study established an efficient Agrobacterium tumefaciens-mediated transformation system for Capsicum annuum L. cv. California Wonder. Cotyledon and hypocotyl explants were co-cultivated with Agrobacterium strain LBA 4404, harboring the binary vector pCAMBIA2301, carrying the npt-II (neomycin phosphotransferase II) and gus (â-glucuronidase) genes. The effects of bacterial cell density and co-cultivation time on transformation efficiency were evaluated. Optimal transformation efficiencies of 43.3% for cotyledon and 33.3% for hypocotyl explants were achieved using an Agrobacterium concentration of OD600 = 0.6 and a 48-h co-cultivation period. As a pre-requisite, in vitro regeneration media were optimized: cotyledon explants exhibited shoot organogenesis on Murashige & Skoog (MS) medium supplemented with 8 mg/L 6-benzylaminopurine (BAP) and 6 mg/L indole-3-acetic acid (IAA), while hypocotyls produced shoots on 6 mg/L meta-topolin (mT) and 4 mg/L IAA. Shoot elongation was maximized on MS medium containing 2 mg/L mT, 1 mg/L gibberellic acid (GA3), and 0.5 mg/L IAA. Root induction on MS medium with 1 mg/L IBA. Bacterial overgrowth was controlled with 500 mg/L cefotaxime, and transformants were selected on 60 mg/L kanamycin. PCR analysis verified stable gus gene integration in putative transgenic plantlets. This optimized protocol offers a valuable tool for introducing agronomically important genes to enhance biotic and abiotic stress tolerance in C. annuum, facilitating genetic improvement of this challenging crop

Downloads

Download data is not yet available.

Author Biographies

  • M Mangal, Indian Agricultural Research Institute

    Division of vegetable Science

    Principal scientist

  • L C Sushmitha, ICAR-Indian Agricultural Research Institute, New Delhi, Indian Agricultural Research Institute

    Division of Vegetable Science

    PhD Scholar

  • A Srivastava, ICAR-Indian Agricultural Research Institute, New Delhi, Indian Agricultural Research Institute

    Division of vegetable science

    Senior Scientist

  • R K Yadav, ICAR-Indian Agricultural Research Institute, New Delhi, Indian Agricultural Research Institute

    Division of vegetable Science

    Professor & Principal Scientist

  • A Roy, ICAR-Indian Agricultural Research Institute, New Delhi, Indian Agricultural Research Institute

    Division of plant pathology

    Principal Scientist

  • N Saini, ICAR-National Institute for Plant Biotechnology, New Delhi, National Research Centre on Plant Biotechnology

    ICAR-National Institute for Plant Biotechnology

    Principal Scientist

References

Chakrabarty, S., Islam, A. M., & Islam, A. A. (2017). Nutritional benefits and pharmaceutical potentialities of chili: A review. Fundamental and Applied Agriculture, 2(2), 227–232.

Char, M., Subrahmanyeswari, T., Bhattacharyya, S., & Gantait, S. (2023). Meta-topolin-induced in vitro propagation, field evaluation, flow cytometry and molecular marker-based genetic stability assessment of potato cv. Badami alu. Plant Cell, Tissue and Organ Culture (PCTOC), 155(3), 809–826. https://doi.org/10.1007/s11240-023-02601-8

Dabauza, M., & Peña, L. (2001). High-efficiency organogenesis in sweet pepper (Capsicum annuum L.) tissues from different seedling explants. Plant Growth Regulation, 33, 221–229. https://doi.org/10.1023/A:1017585407870

Doyle, J. J., & Doyle, J. L. (1990). Isolation of plant DNA from fresh tissue. Focus, 12(1), 13–15.

Gande, K., Marapaka, V., Jogam, P., & Peddaboina, V. (2024). Meta-topolin induced highly efficient plant regeneration from various explants of eggplant (Solanum melongena L.). Plant Cell, Tissue and Organ Culture, 158(3), Article 56. https://doi.org/10.1007/s11240-024-02850-1

Günay, A. L., & Rao, P. S. (1978). In vitro plant regeneration from hypocotyl and cotyledon explants of red pepper (Capsicum). Plant Science Letters, 11(3–4), 365–372. https://doi.org/10.1016/0304-4211(78)90024-X

Heidmann, I., De Lange, B., Lambalk, J., Angenent, G. C., & Boutilier, K. (2011). Efficient sweet pepper transformation mediated by the BABY BOOM transcription factor. Plant Cell Reports, 30, 1107–1115. https://doi.org/10.1007/s00299-011-1018-x

Kim, C. G., Park, K. W., Lee, B., Kim, D. I., Park, J. Y., Kim, H. J., & Kim, H. M. (2009). Gene flow from genetically modified to conventional chili pepper (Capsicum annuum L.). Plant Science, 176(3), 406–412. https://doi.org/10.1016/j.plantsci.2008.12.012

Kothari, S. L., Joshi, A., Kachhwaha, S., & Ochoa-Alejo, N. (2010). Chilli peppers—A review on tissue culture and transgenesis. Biotechnology Advances, 28(1), 35–48. https://doi.org/10.1016/j.biotechadv.2009.08.005

Kumar, R. V., Sharma, V. K., Chattopadhyay, B., & Chakraborty, S. (2012). An improved plant regeneration and Agrobacterium-mediated transformation of red pepper (Capsicum annuum L.). Physiology and Molecular Biology of Plants, 18, 357–364. https://doi.org/10.1007/s12298-012-0132-8

Li, D., Zhao, K., Xie, B., Zhang, B., & Luo, K. (2003). Establishment of a highly efficient transformation system for pepper (Capsicum annuum L.). Plant Cell Reports, 21, 785–788. https://doi.org/10.1007/s00299-003-0581-1

Mahto, B. K., Sharma, P., Rajam, M. V., Reddy, P. M., & Dhar-Ray, S. (2018). An efficient method for Agrobacterium-mediated genetic transformation of chilli pepper (Capsicum annuum L.). Indian Journal of Plant Physiology, 23, 573–581. https://doi.org/10.1007/s40502-018-0389-1

Manoharan, M., Vidya, C. S., & Sita, G. L. (1998). An Agrobacterium-mediated genetic transformation in hot chilli (Capsicum annuum L. var. Pusa jwala). Plant Science, 131(1), 77–83. https://doi.org/10.1016/S0168-9452(97)00231-8

Murashige, T., & Skoog, F. (1962). A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiologia Plantarum, 15(3), 473–497.

Sanatombi, K., & Sharma, G. J. (2006). In vitro regeneration and mass multiplication of Capsicum annuum L. Journal of Food, Agriculture & Environment, 4(1), 205–208.

Sanatombi, K., & Sharma, G. J. (2008). In vitro plant regeneration in six cultivars of Capsicum spp. using different explants. Biologia Plantarum, 52, 141–145. https://doi.org/10.1007/s10535-008-0029-0

Verma, S., Dhiman, K., & Srivastava, D. K. (2013). Agrobacterium-mediated genetic transformation of bell pepper (Capsicum annuum L. cv. California Wonder) with gus and npt-II genes. International Journal of Advanced Biotechnology and Research, 4(3), 397–403.

Vinodhini, J., Karthikeyan, G., & Rajendran, L. (2024). Optimization of an efficient Agrobacterium-mediated genetic transformation in chilli (Capsicum annuum). Vegetos, 37(2), 717–724. https://doi.org/10.1007/s42535-024-00828-0

Won, K. H., Park, S. I., Choi, J., Kim, H. H., Kang, B. C., & Kim, H. (2021). A reliable regeneration method in genome-editable bell pepper ‘Dempsey’. Horticulturae, 7(9), Article 317. https://doi.org/10.3390/horticulturae7090317

Downloads

Published

31-12-2025

Data Availability Statement

None

Issue

Section

Research Papers

How to Cite

Mangal, M., Sushmitha, L. C., Srivastava, A., Yadav, R. K., Roy, A., & Saini, N. (2025). Agrobacterium-mediated transformation of bell pepper (Capsicum annuum L.)using a binary vector system. Journal of Horticultural Sciences, 20(2). https://doi.org/10.24154/jhs.v20i2.4310

Similar Articles

1-10 of 52

You may also start an advanced similarity search for this article.