Association of volatile terpenoids and their biosynthetic genes in hightemperature stress tolerance in tomato (Solanum lycopersicum L.)

Authors

  • Shivashankar K.S. ICAR-IIHR Author
  • Lokesha A.N. Author
  • Ravishankar K.V. Author
  • Geetha G.A. Author
  • Laxman R.H. Author
  • Roy T.K. Author
  • Pavitra K. Author
  • Shankar A.G. Author
  • Mayuri S. Author

DOI:

https://doi.org/10.24154/jhs.v19i2.2254

Keywords:

Abiotic stress, GC-MS, gene expression, high temperature, terpenoids, tomato

Abstract

One of the major limiting factors for the production of tomato is the high temperature stress. Plants are capable of sensing the stress early and produce the terpenoid compounds which may contribute for tolerance or act as a signaling compound to trigger the expression of many tolerant genes. Therefore, the present study was conducted to understand the variability in the production of volatile terpenoid compounds in tolerant (IIHR-2841) and susceptible (IIHR-2914) genotypes and the related gene expression under high temperature stress conditions. Genotypes IIHR-2841 and IIHR-2914 were exposed to high temperature (40±2°C) at early flowering stage using polytunnel. Volatile compounds were extracted and identified using SPME-GC-MS. Higher expression of the terpenoid synthase genes and increased release of terpenoids were observed in the tolerant genotype under stress. Expression of β-Caryophyllene synthase (TPS12) and β-Phyllandrene synthase (TPS20) showed a remarkable 2-fold increase at 9th day of temperature stress in tolerant genotype IIHR-2841 whereas; IIHR-2914 did not show upregulation.

Downloads

Download data is not yet available.

References

Arbona, V., Manzi, M., Ollas, C., & Gomez-Cadenas, A. (2013). Metabolomics as a tool to investigate abiotic stress tolerance in plants. International Journal of Molecular Sciences, 14, 4885. https://doi.org/10.3390/ijms14034885

Behnke, K., Ehlting, B., Teuber, M., Bauerfeind, M., Louis, S., Hansch, R., Polle, A., Bohlmann, J., & Schnitzler, J. P. (2007). Transgenic, nonisoprene emitting poplars don’t like it hot. Plant Journal, 51, 485. https://doi.org/10.1111/j.1365-313X.2007.03157.x

Biradar, G., Laxman, R. H., Namratha, M. R., Thippeswamy, M., Shivashankara, K. S., Roy, T. K., & Sadashiva, A. T. (2019). Induction temperature enhances antioxidant enzyme activity and osmoprotectants in Tomato. International Journal of Current Microbiology and Applied Sciences, 8(3), 1284-1293.

Camejo, D., Rodriguez, P., Morales, M. A., Dellamico, J. M., Torrecillas, A., & Alarcon, J. J. (2005). High temperature effects on photosynthetic activity of two tomato cultivars with different heat susceptibility. Journal of Plant Physiology, 162, 281. https://doi.org/10.1016/j.jplph.2004.07.014

Chomczynski, P., & Mackey, K. (1995). Modification of the trizol reagent procedure for isolation of RNA from polysaccharide- and proteoglycan-rich sources. Biotechniques, 19, 942.

Copolovici, L., Kannaste, A., Pazouki, L., & Niinemets, U. (2012). Emissions of green leaf volatiles and terpenoids from Solanum lycopersicum are quantitatively related to the severity of cold and heat shock treatments. Journal of Plant Physiology, 169, 664. https://doi.org/10.1016/j.jplph.2011.12.019

Dindorf, T., Kuhn, U., Ganzeveld, L., Schebeske, G., Ciccioli, P., Holzke, C., Köble, R., Seufert, G., & Kesselmeier, J. (2006). Significant light and temperature dependent monoterpene emissions from European beech (Fagus sylvatica L.) and their potential impact on the European volatile organic compound budget. Journal of Geophysical Research: Atmospheres, 111(D16). https://doi.org/10.1029/2005JD006751

Duan, Q., Kleiber, A., Jansen, K., Junker-Frohn, L. V., Kammerer, B., Han, G., Zimmer, I., Rennenberg, H., Schnitzler, J. P., Ensminger, I., & Gessler, A. (2019). Effects of elevated growth temperature and enhanced atmospheric vapour pressure deficit on needle and root terpenoid contents of two Douglas fir provenances. Environmental and Experimental Botany, 166, 103819. https://doi.org/10.1016/j.envexpbot.2019.103819

Falara, V., Akhtar, T. A., Nguyen, T. T. H., Spyropoulou, E. A., Bleeker, P. M., Schauvinhold, I., Bonini, M. E., Schilmiller, A. L., Last, R. L., Schuurink, R. C., & Pichersky, E. (2011). The tomato terpene synthase gene family. Plant Physiology, 157, 770. https://doi.org/10.1104/pp.111.179648

Fallik, E., Archbold, D. D., Hamilton-Kemp, T. R., Loughrin, J. H., & Collins, R. W. (1997). Heat treatment temporarily inhibits aroma volatile compound emission from Golden Delicious apples. Journal of Agricultural and Food Chemistry, 45, 4038.

Helmig, D., Ortega, J., Guenther, A., Herrick, J. D., & Geron, C. (2006). Sesquiterpene emissions from loblolly pine and their potential contribution to biogenic aerosol formation in the Southeastern US. Atmospheric Environment, 40(22), 4150-4157. https://doi.org/10.1016/j.atmosenv.2006.02.035

Holopainen, J. K., & Gershenzon, J. (2010). Multiple stress factors and the emission of plant VOCs. Trends in Plant Science, 15, 176. https://doi.org/10.1016/j.tplants.2010.01.006

Jansen, R. M. C., Miebach, M., Kleist, E., Van Henten, E. J., & Wildt, J. (2009). Release of lipoxygenase products and monoterpenes by tomato plants as an indicator of Botrytis cinerea-induced stress. Plant Biology, 11, 859. https://doi.org/10.1111/j.1438-8677.2008.00183.x

Kask, K., Kannaste, A., Talts, E., Copolovici, L., & Niinemets, U. (2016). How specialized volatiles respond to chronic and short-term physiological and shock heat stress in Brassica nigra. Plant, Cell & Environment, 39, 2027. https://doi.org/10.1111/pce.12775

Li, Z., & Sharkey, T. D. (2013). Molecular and pathway controls on biogenic volatile organic compound emissions. In U. Niinemets & R. K. Monson (Eds.), Biology, controls and models of tree volatile organic compound emissions (pp. 119). Springer Netherlands. https://doi.org/10.1007/978-94-007-6606-8_5

Livak, K. J., & Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCt method. Methods, 25, 402. https://doi.org/10.1006/meth.2001.1262

Lokesha, A. N., Shivashankara, K. S., Laxman, R. H., Sadashiva, A. T., & Shankar, A. G. (2019). Response of contrasting tomato genotypes under high temperature stress. Mysore Journal of Agricultural Sciences, 53(2), 9–14.

Loreto, F., & Schnitzler, J. P. (2010). Abiotic stresses and induced BVOCs. Trends in Plant Sciences, 15, 154. https://doi.org/10.1016/j.tplants.2009.12.006

Loreto, F., Barta, C., Brilli, F., & Nogues, I. (2006). On the induction of volatile organic compound emissions by plants as consequence of wounding or fluctuations of light and temperature. Plant, Cell & Environment, 29(9), 1820–1828. https://doi.org/10.1111/j.1365-3040.2006.01561.x

Loreto, F., Centritto, M., Barta, C., Calfapietra, C., Fares, S., & Monson, R. K. (2007). The relationship between isoprene emission rate and dark respiration rate in white poplar (Populus alba L.) leaves. Plant, Cell & Environment, 30(5), 662–669. https://doi.org/10.1111/j.1365-3040.2007.01648.x

Maes, K., & Debergh, P. C. (2003). Volatiles emitted from in vitro grown tomato shoots during abiotic and biotic stress. Plant Cell, Tissue and Organ Culture, 75, 73–78. https://doi.org/10.1023/A:1024650006740

Niinemets, U. (2010). Mild versus severe stress and BVOCs: thresholds, priming and consequences. Trends in Plant Sciences, 15, 145. https://doi.org/10.1016/j.tplants.2009.11.008

Niinemets, U., Seufert, G., Steinbrecher, R., & Tenhunen, J. D. (2002). A model coupling foliar monoterpene emissions to leaf photosynthetic characteristics in Mediterranean evergreen Quercus species. New Phytologist, 153, 257–275. https://doi.org/10.1046/j.0028-646X.2001.00324.x

Pazouki, L., Kanagendrana, A., Lia, S., Kannaste, A., Memarib, H. R., Bichele, R., & Niinemets, U. (2016). Mono- and sesquiterpene release from tomato (Solanum lycopersicum) leaves upon mild and severe heat stress and through recovery: From gene expression to emission responses. Environmental and Experimental Botany, 132, 1–13. https://doi.org/10.1016/j.envexpbot.2016.08.003

Peñuelas, J., & Staudt, M. (2010). BVOCs and global change. Trends in Plant Sciences, 15, 133. https://doi.org/10.1016/j.tplants.2009.12.005

Perez, A. G., Sanz, C., Olias, R., & Olias, J. M. (1999). Lipoxygenase and hydroperoxide lyase activities in ripening strawberry fruits. Journal of Agricultural and Food Chemistry, 47, 249–253. https://doi.org/10.1021/jf9807519

Rosenkranz, M., & Schnitzler, J. P. (2013). Genetic engineering of BVOC emissions from trees. In U. Niinemets & R. K. Monson (Eds.), Biology, controls and models of tree volatile organic compound emissions (Vol. 5, pp. 95–108). Springer. https://doi.org/10.1007/978-94-007-6606-8_4

Tarvainen, V., Hakola, H., Hellén, H., Bäck, J., Hari, P., & Kulmala, M. (2005). Temperature and light dependence of the VOC emissions of Scots pine. Atmospheric Chemistry and Physics, 5(4), 989–998. https://doi.org/10.5194/acp-5-989-2005

Valolahti, H., Kivimäenpää, M., Faubert, P., Michelsen, A., & Rinnan, R. (2015). Climate change-induced vegetation changes as a driver of increased subarctic biogenic volatile organic compound emissions. Global Change Biology, 21, 3478–3488. https://doi.org/10.1111/gcb.12953

Vickers, C. E., Gershenzon, J., Lerdau, M. T., & Loreto, F. (2009). A unified mechanism of action for volatile isoprenoids in plant abiotic stress. Nature Chemical Biology, 5, 283–291. https://doi.org/10.1038/nchembio.158

Wang, H., Ma, D., Yang, J., Deng, K., Li, M., Ji, X., Zhong, L., & Zhao, H. (2018). An integrative volatile terpenoid profiling and transcriptomics analysis for gene mining and functional characterization of AvBPPS and AvPS involved in the monoterpenoid biosynthesis in Amomum villosum. Frontiers in Plant Science, 9, 846. https://doi.org/10.3389/fpls.2018.00846

Downloads

Published

20-09-2024

Issue

Section

Research Papers

How to Cite

Shivashankar K.S., Lokesha A.N., Ravishankar K.V., Geetha G.A., Laxman R.H., Roy T.K., Pavitra K., Shankar A.G., & Mayuri S. (2024). Association of volatile terpenoids and their biosynthetic genes in hightemperature stress tolerance in tomato (Solanum lycopersicum L.). Journal of Horticultural Sciences, 19(2). https://doi.org/10.24154/jhs.v19i2.2254

Similar Articles

21-30 of 365

You may also start an advanced similarity search for this article.