Sensors and smart farming using IoT: A review on potential applications in horticultural crops
DOI:
https://doi.org/10.24154/jhs.v20i1.2223Keywords:
Horticulture, internet of things, IoT, data analytics, sensorsAbstract
Horticulture farming is a subset of agriculture, contributing approximately 30% of the agricultural GDP in India. The nutritional benefits of horticultural crops such as fruits, vegetables, and mushrooms play an important role in daily life. With the ever-increasing demand for food, the horticultural industry faces new challenges that require innovative and sustainable solutions. This has led to a significant shift towards technology-driven solutions to address the challenges of a growing population in a sustainable way. The Internet of Things (IoT), a promising technology in smart farming, greatly helps in real-time monitoring of plant growth status and facilitates faster decisions under challenging circumstances. Smart farming in horticultural crops relies on a range of components including sensors, actuators, microcontrollers, and cloud storage for the effective implementation of IoT. These components work together to collect and store data, which can be utilized to optimize the allocation of input resources. This review discusses how components of smart farming can improve resource management, crop yields, and the quality of production of horticultural crops, along with its applications and development in this area.
Downloads
References
Aarthi, R., Sivakumar, D., & Mariappan, V. (2023). Smart soil property analysis using IoT: A case study implementation in backyard gardening. Procedia Computer Science, 218, 2842–2851. https://doi.org/10.1016/j.procs.2023.01.255
Abdelouhahid, R. A., Debauche, O., Mahmoudi, S., Marzak, A., Manneback, P., & Lebeau, F. (2020). Open phytotron: A new IoT device for home gardening. In 2020 5th International Conference on Cloud Computing and Artificial Intelligence: Technologies and Applications (CloudTech) (pp. 1–8). IEEE. https://doi.org/10.1109/cloudtech49835.2020.9365892
Al Rafi, F., Kowanda, A., Salahuddin, N. S., & Saptriani, T. (2018). Design of orchid monitoring system based on IoT. In 2018 Third International Conference on Informatics and Computing (ICIC) (pp. 1–6). IEEE. https://doi.org/10.1109/IAC.2018.8780419
Al-Zahrani, S., & Al-Baity, H. H. (2019). Smart irrigation control system using Internet of Things: An empirical study in Kingdom of Saudi Arabia. An International Peer Reviewed Open Access Journal for Rapid Publication, 539. http://dx.doi.org/10.21786/bbrc/12.2/42
Aziz, M. H., Saptiani, P., Iryanti, M., & Aminudin, A. (2019). Design of carbon dioxide level measures on peat soil with MG 811 sensor. Journal of Physics: Conference Series, 1280(2), 022061. https://doi.org/10.1088/1742-6596/1280/2/022061
Bardhan, S., Jenamani, M., & Routray, A. (2022). Improving IoT sensor data quality using Kalman filter: The case of cold chain monitoring for Indian mangoes. In 2022 IEEE 7th International Conference for Convergence in Technology (I2CT) (pp. 1–8). IEEE. https://doi.org/10.1109/I2CT54291.2022.9825458
Bicans, J., Kviesis, K., & Avotins, A. (2019). IoT camera-based approach to capture and process SI-NDVI sensor data for industrial tomato greenhouse. In 2019 IEEE 7th Workshop on Advances in Information, Electronic and Electrical Engineering (AIEEE) (pp. 1–6). IEEE. https://doi.org/10.1109/AIEEE48629.2019.8977127
Biqing, L., Yongfa, L., Miao, T., & Shiyong, Z. (2018). Design and implementation of sugarcane growth monitoring system based on RFID and ZigBee. International Journal of Online Engineering, 14(3). https://doi.org/10.3991/ijoe.v14i03.8413
Chen, X., Su, Y., Li, Y., Han, L., Liao, J., & Yang, S. (2014). Retrieving China’s surface soil moisture and land surface temperature using AMSR-E brightness temperatures. Remote Sensing Letters, 5(7), 662–671. https://doi.org/10.1080/2150704X.2014.960610
Choudhury, S. B., Jain, P., Kallamkuth, S., Ramanath, S., Bhatt, P. V., Sarangi, S., & Srinivasu, P. (2019). Precision crop monitoring with affordable IoT: Experiences with okra. In 2019 Global IoT Summit (GIoTS) (pp. 1–6). IEEE. https://doi.org/10.1109/GIOTS.2019.8766417
Choudhury, S., Singh, R., Gehlot, A., Kuchhal, P., Akram, S. V., Priyadarshi, N., & Khan, B. (2022). Agriculture field automation and digitization using Internet of Things and machine learning. Journal of Sensors. https://doi.org/10.1155/2022/9042382
Datta, S., Taghvaeian, S., Ochsner, T. E., Moriasi, D., Gowda, P., & Steiner, J. L. (2018). Performance assessment of five different soil moisture sensors under irrigated field conditions in Oklahoma. Sensors, 18(11), 3786.
Deliana, M., Mutiawani, V., & Dawood, R. (2022). Monitoring system 4.0 on horticultural plantation land based on the Internet of Things. In International Conference on Electrical Engineering and Informatics (ICELTICs) (pp. 101–106). IEEE. https://doi.org/10.1109/ICELTICS56128.2022.9932104
Dewi, C., & Chen, R. C. (2019). Decision-making based on IoT data collection for precision agriculture. In Asian Conference on Intelligent Information and Database Systems (pp. 31–42). Springer. https://doi.org/10.1007/978-3-030-14132-5_3
Elsherbiny, O., Zhou, L., He, Y., & Qiu, Z. (2022). A novel hybrid deep network for diagnosing water status in wheat crop using IoT-based multimodal data. Computers and Electronics in Agriculture, 203, 107453. https://doi.org/10.1016/j.compag.2022.107453
Gogoi, S., Saikia, B., Boruah, P., & Khamari, B. (2022). Internet of Things (IoT) based insect pest detection and management. In S. Sanjay-Swami (Ed.), Advancing Innovations in Sustainable Agriculture (Vol. 1, pp. 73–80). Vital Biotech Publication.
Hasyer, M. A., Khalid, A. M., Neranjan, N., Belayan, J., Metali, F., Yassin, H., & Bakar, M. S. A. (2023). IoT-powered pest management system for chili plants: Analyzing the effects of various light spectra towards pest and plant health. IEEE Asia-Pacific Conference on Computer Science and Data Engineering, 1–6. https://doi.org/10.1109/CSDE59766.2023.10487659
Høye, T. T., Ärje, J., Bjerge, K., Hansen, O. L., Iosifidis, A., Leese, F., & Raitoharju, J. (2021). Deep learning and computer vision will transform entomology. Proceedings of the National Academy of Sciences, 118(2). https://doi.org/10.1073/pnas.2002545117
Kaburuan, E. R., & Jayadi, R. (2019). A design of IoT-based monitoring system for intelligent indoor micro-climate horticulture farming in Indonesia. Procedia Computer Science, 157, 459–464. https://doi.org/10.1016/j.procs.2019.09.001
Keates, O. (2023). Actionable insights for horticulture supply chains through advanced IoT analytics. Procedia Computer Science, 217, 1631–1640. https://doi.org/10.1016/j.procs.2022.12.363
Kumkhet, B., Rakluea, P., Sangmahamad, P., Pirajnanchai, V., Pechrkool, T., & Sutham, T. (2022). IoT-based automatic brightness and soil moisture control system for Gerbera smart greenhouse. In 2022 International Electrical Engineering Congress (iEECON) (pp. 1–4). IEEE. https://doi.org/10.1109/IEECON53204.2022.9741578
Laxman, R. H., Hemamalini, P., Namratha, M. R., Bhatt, R. M., & Sadashiva, A. T. (2022). Phenotyping deficit moisture stress tolerance in tomato using image-derived digital features. International Journal of Bio-resource and Stress Management, 13(4), 339–347. https://doi.org/10.23910/1.2022.2544
Laxman, R. H., Hemamalini, P., Bhatt, R. M., & Sadashiva, A. T. (2018). Non-invasive quantification of tomato (Solanum lycopersicum L.) plant biomass through digital imaging using phenomics platform. Indian Journal of Plant Physiology, 23, 369–375. https://doi.org/10.1007/s40502-018-0374-8
Marcos, L., & Mai, K. V. (2020). Light spectra optimization in indoor plant growth for Internet of Things. In 2020 IEEE International IoT, Electronics and Mechatronics Conference (IEMTRONICS) (pp. 1–6). IEEE. https://doi.org/10.1109/IEMTRONICS51293.2020.9216421
Mittal, A., Sarangi, S., Ramanath, S., Bhatt, P. V., Sharma, R., & Srinivasu, P. (2018). IoT-based precision monitoring of horticultural crops: A case study on cabbage and capsicum. In IEEE Global Humanitarian Technology Conference (GHTC) (pp. 1–7). IEEE. https://doi.org/10.1109/GHTC.2018.8601908
Muangprathub, J., Boonnam, N., Kajornkasirat, S., Lekbangpong, N., Wanichsombat, A., & Nillaor, P. (2019). IoT and agriculture data analysis for smart farm. Computers and Electronics in Agriculture, 156, 467–474. https://doi.org/10.1016/j.compag.2018.12.011
Nayagam, M. G., Vijayalakshmi, B., Somasundaram, K., Mukunthan, M. A., Yogaraja, C. A., & Partheeban, P. (2023). Control of pests and diseases in plants using IoT technology. Measurement: Sensors, 26, 100713.
Namgyel, T., Siyang, S., Khunarak, C., Pobkrut, T., Norbu, J., Chaiyasit, T., & Kerdcharoen, T. (2018). IoT-based hydroponic system with supplementary LED light for smart home farming of lettuce. In 2018 15th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (pp. 221–224). https://doi.org/10.1109/ECTICON.2018.8619983
Palconit, M. G. B., Macachor, E. B., Notarte, M. P., Molejon, W. L., Visitacion, A. Z., Rosales, M. A., & Dadios, E. P. (2020). IoT-based precision irrigation system for eggplant and tomato. In 9th International Symposium on Computational Intelligence and Industrial Applications (pp. 0–6).
Postolache, S., Sebastião, P., Viegas, V., Postolache, O., & Cercas, F. (2022). IoT-based systems for soil nutrients assessment in horticulture. Sensors, 23(1), 403. https://doi.org/10.3390/s23010403
Pramanik, M., Khanna, M., Singh, M., Singh, D. K., Sudhishri, S., Bhatia, A., & Ranjan, R. (2021). Automation of soil moisture sensor-based basin irrigation system. Smart Agricultural Technology, 2, 100032. https://doi.org/10.1016/j.atech.2021.100032
Rahman, H., Faruq, M. O., Hai, T. B. A., Rahman, W., Hossain, M. M., Hasan, M., & Azad, M. M. (2022). IoT-enabled mushroom farm automation with machine learning to classify toxic mushrooms in Bangladesh. Journal of Agriculture and Food Research, 100267. https://doi.org/10.1016/j.jafr.2021.100267
Ren, L., Zhai, X., Yang, Y., & Xu, J. (2020). Design of horticultural wireless intelligent maintenance system based on STM32 and Android. IOP Conference Series: Earth and Environmental Science, 474(3), 032016. https://doi.org/10.1088/1755-1315/474/3/032016
Reynolds, D., Ball, J., Bauer, A., Davey, R., Griffiths, S., & Zhou, J. (2019). CropSight: A scalable and open-source information management system for distributed plant phenotyping and IoT-based crop management. GigaScience, 8(3), giz009. https://doi.org/10.1093/gigascience/giz009
Saranya, K., Dharini, P. U., Darshni, P. U., & Monisha, S. (2019). IoT-based pest controlling system for smart agriculture. In International Conference on Communication and Electronics Systems (ICCES) (pp. 1548–1552). https://doi.org/10.1109/ICCES45898.2019.9002046
Sengupta, A., Mukherjee, A., Das, A., & De, D. (2021). GrowFruit: An IoT-based radial growth rate monitoring device for fruit. IEEE Consumer Electronics Magazine, 11(3), 38–43. https://doi.org/10.1109/MCE.2021.3119276
Sengupta, A., Mukherjee, A., Das, A., & De, D. (2022). AgriStick: An IoT-enabled agricultural appliance to measure growth of jackfruit using 2-axis joystick. IEEE Instrumentation & Measurement Magazine, 25(3), 58–62. https://doi.org/10.1109/MIM.2022.9759351
Shakir, A. A., Hakim, F., Rasheduzzaman, M., Chakraborty, S., Ahmed, T. U., & Hossain, S. (2019). Design and implementation of SENSEPACK: An IoT-based mushroom cultivation monitoring system. In 2019 International Conference on Electrical, Computer and Communication Engineering (pp. 1–6). IEEE. https://doi.org/10.1109/ECACE.2019.8679183
Smolka, M., Puchberger-Enengl, D., Bipoun, M., Klasa, A., Kiczkajlo, M., Oemiechowski, W., & Vellekoop, M. J. (2017). A mobile lab-on-a-chip device for on-site soil nutrient analysis. Precision Agriculture, 18(2), 152–168. https://doi.org/10.1007/s11119-016-9452-y
Soler-Méndez, M., Parras-Burgos, D., Benouna-Bennouna, R., & Molina-Martínez, J. M. (2022). Agroclimatic evolution web application as a powerful solution for managing climate data. Scientific Reports, 12(1), 1–13. https://doi.org/10.1038/s41598-022-10316-7
Sudana, D., & Eman, D. (2019). IoT-based hydroponic system using drip non-circulation system for paprika. In International Conference of Artificial Intelligence and Information Technology (pp. 124–128). https://doi.org/10.1109/ICAIIT.2019.8834581
Taşkın, D., & Taşkın, C. (2018). Developing a Bluetooth low-energy sensor node for greenhouse precision agriculture as an Internet of Things application. Advances in Science and Technology: Research Journal, 12(4). https://doi.org/10.12913/22998624/100342
Wan, X. F., Zheng, T., Cui, J., Zhang, F., Ma, Z. Q., & Yang, Y. (2019). Near-field communication-based agricultural management service systems for family farms. Sensors, 19(20), 4406. https://doi.org/10.3390/s19204406
Xiao, X., Fu, Y., Yang, Y., Nikitina, M. A., & Zhang, X. (2022). Battery-free wireless moisture sensor system for fruit monitoring. Results in Engineering, 14, 100420. https://doi.org/10.1016/j.rineng.2022.100420
Zhang, J., Liu, P., Xue, W., & Rui, Z. (2018). Farmland intelligent information collection system based on NB-IoT. In Cloud Computing and Security: 4th International Conference, Haikou, China, June 8–10, 2018, Revised Selected Papers, Part V (pp. 331–343). Springer. https://doi.org/10.1007/978-3-030-00018-9_30
Downloads
Published
Data Availability Statement
NA
Issue
Section
License
Copyright (c) 2025 M K Chandraprakash, P Hemamalini, K R Suneetha, R H Laxman (Author)

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Authors retain copyright. Articles published are made available as open access articles, distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original author and source are credited. 
This journal permits and encourages authors to share their submitted versions (preprints), accepted versions (postprints) and/or published versions (publisher versions) freely under the CC BY-NC-SA 4.0 license while providing bibliographic details that credit, if applicable.



. 








