Association of volatile terpenoids and their biosynthetic genes in hightemperature stress tolerance in tomato (Solanum lycopersicum L.)
DOI:
https://doi.org/10.24154/jhs.v19i2.2254Keywords:
Abiotic stress, GC-MS, gene expression, high temperature, terpenoids, tomatoAbstract
One of the major limiting factors for the production of tomato is the high temperature stress. Plants are capable of sensing the stress early and produce the terpenoid compounds which may contribute for tolerance or act as a signaling compound to trigger the expression of many tolerant genes. Therefore, the present study was conducted to understand the variability in the production of volatile terpenoid compounds in tolerant (IIHR-2841) and susceptible (IIHR-2914) genotypes and the related gene expression under high temperature stress conditions. Genotypes IIHR-2841 and IIHR-2914 were exposed to high temperature (40±2°C) at early flowering stage using polytunnel. Volatile compounds were extracted and identified using SPME-GC-MS. Higher expression of the terpenoid synthase genes and increased release of terpenoids were observed in the tolerant genotype under stress. Expression of β-Caryophyllene synthase (TPS12) and β-Phyllandrene synthase (TPS20) showed a remarkable 2-fold increase at 9th day of temperature stress in tolerant genotype IIHR-2841 whereas; IIHR-2914 did not show upregulation.
Downloads
References
Arbona, V., Manzi, M., Ollas, C., & Gomez-Cadenas, A. (2013). Metabolomics as a tool to investigate abiotic stress tolerance in plants. International Journal of Molecular Sciences, 14, 4885. https://doi.org/10.3390/ijms14034885
Behnke, K., Ehlting, B., Teuber, M., Bauerfeind, M., Louis, S., Hansch, R., Polle, A., Bohlmann, J., & Schnitzler, J. P. (2007). Transgenic, nonisoprene emitting poplars don’t like it hot. Plant Journal, 51, 485. https://doi.org/10.1111/j.1365-313X.2007.03157.x
Biradar, G., Laxman, R. H., Namratha, M. R., Thippeswamy, M., Shivashankara, K. S., Roy, T. K., & Sadashiva, A. T. (2019). Induction temperature enhances antioxidant enzyme activity and osmoprotectants in Tomato. International Journal of Current Microbiology and Applied Sciences, 8(3), 1284-1293.
Camejo, D., Rodriguez, P., Morales, M. A., Dellamico, J. M., Torrecillas, A., & Alarcon, J. J. (2005). High temperature effects on photosynthetic activity of two tomato cultivars with different heat susceptibility. Journal of Plant Physiology, 162, 281. https://doi.org/10.1016/j.jplph.2004.07.014
Chomczynski, P., & Mackey, K. (1995). Modification of the trizol reagent procedure for isolation of RNA from polysaccharide- and proteoglycan-rich sources. Biotechniques, 19, 942.
Copolovici, L., Kannaste, A., Pazouki, L., & Niinemets, U. (2012). Emissions of green leaf volatiles and terpenoids from Solanum lycopersicum are quantitatively related to the severity of cold and heat shock treatments. Journal of Plant Physiology, 169, 664. https://doi.org/10.1016/j.jplph.2011.12.019
Dindorf, T., Kuhn, U., Ganzeveld, L., Schebeske, G., Ciccioli, P., Holzke, C., Köble, R., Seufert, G., & Kesselmeier, J. (2006). Significant light and temperature dependent monoterpene emissions from European beech (Fagus sylvatica L.) and their potential impact on the European volatile organic compound budget. Journal of Geophysical Research: Atmospheres, 111(D16). https://doi.org/10.1029/2005JD006751
Duan, Q., Kleiber, A., Jansen, K., Junker-Frohn, L. V., Kammerer, B., Han, G., Zimmer, I., Rennenberg, H., Schnitzler, J. P., Ensminger, I., & Gessler, A. (2019). Effects of elevated growth temperature and enhanced atmospheric vapour pressure deficit on needle and root terpenoid contents of two Douglas fir provenances. Environmental and Experimental Botany, 166, 103819. https://doi.org/10.1016/j.envexpbot.2019.103819
Falara, V., Akhtar, T. A., Nguyen, T. T. H., Spyropoulou, E. A., Bleeker, P. M., Schauvinhold, I., Bonini, M. E., Schilmiller, A. L., Last, R. L., Schuurink, R. C., & Pichersky, E. (2011). The tomato terpene synthase gene family. Plant Physiology, 157, 770. https://doi.org/10.1104/pp.111.179648
Fallik, E., Archbold, D. D., Hamilton-Kemp, T. R., Loughrin, J. H., & Collins, R. W. (1997). Heat treatment temporarily inhibits aroma volatile compound emission from Golden Delicious apples. Journal of Agricultural and Food Chemistry, 45, 4038.
Helmig, D., Ortega, J., Guenther, A., Herrick, J. D., & Geron, C. (2006). Sesquiterpene emissions from loblolly pine and their potential contribution to biogenic aerosol formation in the Southeastern US. Atmospheric Environment, 40(22), 4150-4157. https://doi.org/10.1016/j.atmosenv.2006.02.035
Holopainen, J. K., & Gershenzon, J. (2010). Multiple stress factors and the emission of plant VOCs. Trends in Plant Science, 15, 176. https://doi.org/10.1016/j.tplants.2010.01.006
Jansen, R. M. C., Miebach, M., Kleist, E., Van Henten, E. J., & Wildt, J. (2009). Release of lipoxygenase products and monoterpenes by tomato plants as an indicator of Botrytis cinerea-induced stress. Plant Biology, 11, 859. https://doi.org/10.1111/j.1438-8677.2008.00183.x
Kask, K., Kannaste, A., Talts, E., Copolovici, L., & Niinemets, U. (2016). How specialized volatiles respond to chronic and short-term physiological and shock heat stress in Brassica nigra. Plant, Cell & Environment, 39, 2027. https://doi.org/10.1111/pce.12775
Li, Z., & Sharkey, T. D. (2013). Molecular and pathway controls on biogenic volatile organic compound emissions. In U. Niinemets & R. K. Monson (Eds.), Biology, controls and models of tree volatile organic compound emissions (pp. 119). Springer Netherlands. https://doi.org/10.1007/978-94-007-6606-8_5
Livak, K. J., & Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCt method. Methods, 25, 402. https://doi.org/10.1006/meth.2001.1262
Lokesha, A. N., Shivashankara, K. S., Laxman, R. H., Sadashiva, A. T., & Shankar, A. G. (2019). Response of contrasting tomato genotypes under high temperature stress. Mysore Journal of Agricultural Sciences, 53(2), 9–14.
Loreto, F., & Schnitzler, J. P. (2010). Abiotic stresses and induced BVOCs. Trends in Plant Sciences, 15, 154. https://doi.org/10.1016/j.tplants.2009.12.006
Loreto, F., Barta, C., Brilli, F., & Nogues, I. (2006). On the induction of volatile organic compound emissions by plants as consequence of wounding or fluctuations of light and temperature. Plant, Cell & Environment, 29(9), 1820–1828. https://doi.org/10.1111/j.1365-3040.2006.01561.x
Loreto, F., Centritto, M., Barta, C., Calfapietra, C., Fares, S., & Monson, R. K. (2007). The relationship between isoprene emission rate and dark respiration rate in white poplar (Populus alba L.) leaves. Plant, Cell & Environment, 30(5), 662–669. https://doi.org/10.1111/j.1365-3040.2007.01648.x
Maes, K., & Debergh, P. C. (2003). Volatiles emitted from in vitro grown tomato shoots during abiotic and biotic stress. Plant Cell, Tissue and Organ Culture, 75, 73–78. https://doi.org/10.1023/A:1024650006740
Niinemets, U. (2010). Mild versus severe stress and BVOCs: thresholds, priming and consequences. Trends in Plant Sciences, 15, 145. https://doi.org/10.1016/j.tplants.2009.11.008
Niinemets, U., Seufert, G., Steinbrecher, R., & Tenhunen, J. D. (2002). A model coupling foliar monoterpene emissions to leaf photosynthetic characteristics in Mediterranean evergreen Quercus species. New Phytologist, 153, 257–275. https://doi.org/10.1046/j.0028-646X.2001.00324.x
Pazouki, L., Kanagendrana, A., Lia, S., Kannaste, A., Memarib, H. R., Bichele, R., & Niinemets, U. (2016). Mono- and sesquiterpene release from tomato (Solanum lycopersicum) leaves upon mild and severe heat stress and through recovery: From gene expression to emission responses. Environmental and Experimental Botany, 132, 1–13. https://doi.org/10.1016/j.envexpbot.2016.08.003
Peñuelas, J., & Staudt, M. (2010). BVOCs and global change. Trends in Plant Sciences, 15, 133. https://doi.org/10.1016/j.tplants.2009.12.005
Perez, A. G., Sanz, C., Olias, R., & Olias, J. M. (1999). Lipoxygenase and hydroperoxide lyase activities in ripening strawberry fruits. Journal of Agricultural and Food Chemistry, 47, 249–253. https://doi.org/10.1021/jf9807519
Rosenkranz, M., & Schnitzler, J. P. (2013). Genetic engineering of BVOC emissions from trees. In U. Niinemets & R. K. Monson (Eds.), Biology, controls and models of tree volatile organic compound emissions (Vol. 5, pp. 95–108). Springer. https://doi.org/10.1007/978-94-007-6606-8_4
Tarvainen, V., Hakola, H., Hellén, H., Bäck, J., Hari, P., & Kulmala, M. (2005). Temperature and light dependence of the VOC emissions of Scots pine. Atmospheric Chemistry and Physics, 5(4), 989–998. https://doi.org/10.5194/acp-5-989-2005
Valolahti, H., Kivimäenpää, M., Faubert, P., Michelsen, A., & Rinnan, R. (2015). Climate change-induced vegetation changes as a driver of increased subarctic biogenic volatile organic compound emissions. Global Change Biology, 21, 3478–3488. https://doi.org/10.1111/gcb.12953
Vickers, C. E., Gershenzon, J., Lerdau, M. T., & Loreto, F. (2009). A unified mechanism of action for volatile isoprenoids in plant abiotic stress. Nature Chemical Biology, 5, 283–291. https://doi.org/10.1038/nchembio.158
Wang, H., Ma, D., Yang, J., Deng, K., Li, M., Ji, X., Zhong, L., & Zhao, H. (2018). An integrative volatile terpenoid profiling and transcriptomics analysis for gene mining and functional characterization of AvBPPS and AvPS involved in the monoterpenoid biosynthesis in Amomum villosum. Frontiers in Plant Science, 9, 846. https://doi.org/10.3389/fpls.2018.00846
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Shivashankar K.S., Lokesha A.N., Ravishankar K.V., Geetha G.A., Laxman R.H., Roy T.K., Pavitra K., Shankar A.G., Mayuri S. (Author)

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Authors retain copyright. Articles published are made available as open access articles, distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original author and source are credited.
This journal permits and encourages authors to share their submitted versions (preprints), accepted versions (postprints) and/or published versions (publisher versions) freely under the CC BY-NC-SA 4.0 license while providing bibliographic details that credit, if applicable.