Dragon fruit peel extract mediated green synthesis of silver nanoparticles and their antifungal activity against Colletotrichum truncatum causing anthracnose in chilli
DOI:
https://doi.org/10.24154/jhs.v18i1.2165Keywords:
Anthracnose, antifungal activity, chilli, colletotrichum truncatum, dragon fruit, green synthesis, silver nanoparticleAbstract
Plant extracts have been used as reducing and stabilising agents to synthesise various metal-based nanoparticles due to their cost-effective and eco-friendly nature. In the present work, a green and environment-friendly method is adopted for synthesising silver nanoparticles (Ag NPs) using a biowaste of dragon fruit (Hylocereus spp.) peel aqueous extract at 80ºC in an alkaline condition. The Ag NPs were characterised through various analytical and microscopic techniques. The UV-Vis spectra of Ag NPs showed a characteristic peak between 400 - 410 nm. Transmission and scanning electron microscopic studies confirmed spherical monodispersed particles with an average size of 7 nm. Energy-dispersive X-ray spectroscopy (EDX) confirmed the presence of silver and silver chloride among the principal elements. The X-ray powder diffraction (XRD) spectra showed the crystalline nature of synthesised silver and silver chloride nanoparticles. The synthesised nanoparticles showed potential antifungal activity against Colletotrichum truncatum spores in both in vitro conidial germination and spread plate assays. The efficacy of the synthesised NPs confirmed that these NPs could be used as potential antifungal agents against C. truncatum to control anthracnose in chilli.
References
Abirami, K., Swain, S., Baskaran, V., Venkatesan, K., Sakthivel, K. and Bommayasamy, N. 2021. Distinguishing three Dragon fruit (Hylocereus spp.) species grown in Andaman and Nicobar Islands of India using morphological, biochemical and molecular traits. Sci. Rep., 11(1): 1-14. DOI: https://doi.org/10.1038/s41598-021-81682-x
Aguilar-Mendez, M., San Martín-Martínez, E., Ortega-Arroyo, L., Cobian-Portillo, G. and Sanchez-Espindola, E. 2011. Synthesis and characterization of silver nanoparticles: effect on phytopathogen Colletotrichum gloesporioides. J. Nanoparticle Res., 13(6): 2525-2532. DOI: https://doi.org/10.1007/s11051-010-0145-6
Aminuzzaman, M., Ng, P. S., Goh, W.-S., Ogawa, S. and Watanabe, A. 2019. Value-adding to dragon fruit (Hylocereus polyrhizus) peel biowaste: green synthesis of ZnO nanoparticles and their characterization. Inorganic Nano-Metal Chem., 49(11): 401-411. DOI: https://doi.org/10.1080/24701556.2019.1661464
Awwad, A. M., Salem, N. M., Ibrahim, Q. M. and Abdeen, A. O. 2015. Phytochemical fabrication and characterization of silver/silver chloride nanoparticles using Albizia julibrissin flowers extract. Adv. Mater. Lett, 6(8): 726-730. DOI: https://doi.org/10.5185/amlett.2015.5816
Chowdappa, P. and Gowda, S. 2013. Nanotechnology in crop protection: Status and scope. Pest Manage. Hortic. Ecosystems, 19(2): 131-151.
Chowdappa, P., Gowda, S., Chethana, C. and Madhura, S. 2014. Antifungal activity of chitosan-silver nanoparticle composite against Colletotrichum gloeosporioides associated with mango anthracnose. Af. J. Microbiol. Res., 8(17): 1803-1812. DOI: https://doi.org/10.5897/AJMR2013.6584
Devi, T. B., Ahmaruzzaman, M. and Begum, S. 2016. A rapid, facile and green synthesis of Ag@ AgCl nanoparticles for the effective reduction of 2, 4-dinitrophenyl hydrazine. New J Chem., 40(2): 1497-1506. DOI: https://doi.org/10.1039/C5NJ02367J
Gowda, S. and Sriram, S. 2020. Current status of nanotechnology application in management of the complex fungal pathogen Colletotrichum– a review. Sydowia, 72: 275.
Haes, A. J., Zou, S., Schatz, G. C. and Van Duyne, R. P. 2004. A nanoscale optical biosensor: The long range distance dependence of the localized surface plasmon resonance of noble metal nanoparticles. J. Physical Chem. B., 108(1): 109-116. DOI: https://doi.org/10.1021/jp0361327
Hu, X., Zhang, X., Ngo, H. H., Guo, W., Wen, H., Li, C., Zhang, Y. and Ma, C. 2020. Comparison study on the ammonium adsorption of the biochars derived from different kinds of fruit peel. Sci. Total Envi., 707: 135544. DOI: https://doi.org/10.1016/j.scitotenv.2019.135544
Hua, Q., Chen, C., Zur, N. T., Wang, H., Wu, J., Chen, J., Zhang, Z., Zhao, J., Hu, G. and Qin, Y. 2018. Metabolomic characterization of pitaya fruit from three red-skinned cultivars with different pulp colors. Plant Physiol. Biochem., 126: 117-125. DOI: https://doi.org/10.1016/j.plaphy.2018.02.027
Hwang, E. T., Lee, J. H., Chae, Y. J., Kim, Y. S., Kim, B. C., Sang, B. I. and Gu, M. B. 2008. Analysis of the toxic mode of action of silver nanoparticles using stress specific bioluminescent bacteria. Small, 4(6): 746-750. DOI: https://doi.org/10.1002/smll.200700954
Iravani, S. and Zolfaghari, B. 2013. Green synthesis of silver nanoparticles using Pinus eldarica bark extract. BioMed Res. Intl., http:// dx.doi.org/10.1155/2013/639725. DOI: https://doi.org/10.1155/2013/639725
Jawad, A. H., Kadhum, A. M. and Ngoh, Y. 2018. Applicability of dragon fruit (Hylocereus polyrhizus) peels as low-cost biosorbent for adsorption of methylene blue from aqueous solution: kinetics, equilibrium and thermodynamics studies. Desalin Water Treat, 109: 231-240. DOI: https://doi.org/10.5004/dwt.2018.21976
Jiang, Y. L., Chen, L. Y., Lee, T. C. and Chang, P. T. 2020. Improving postharvest storage of fresh red-fleshed pitaya (Hylocereus polyrhizus sp.) fruit by pre-harvest application of CPPU. Sci. Horti., 273: 109646. DOI: https://doi.org/10.1016/j.scienta.2020.109646
Kedi, P. B. E., Meva, F. E. a., Kotsedi, L., Nguemfo, E. L., Zangueu, C. B., Ntoumba, A. A., Mohamed, H. E. A., Dongmo, A. B. and Maaza, M. 2018. Eco-friendly synthesis, characterization, in vitro and in vivo anti- inflammatory activity of silver nanoparticle- mediated Selaginella myosurus aqueous extract. Intl. J. Nanomed., 13: 8537. DOI: https://doi.org/10.2147/IJN.S174530
Lamsal, K., Kim, S. W., Jung, J. H., Kim, Y. S., Kim, K. S. and Lee, Y. S. 2011. Application of silver nanoparticles for the control of Colletotrichum species in vitro and pepper anthracnose disease in field. Mycobiol., 39(3): 194-199. DOI: https://doi.org/10.5941/MYCO.2011.39.3.194
Lin, Y.-H., Wang, J.-J., Wang, Y.-T., Lin, H.-K. and Lin, Y.-J. 2020. Antifungal properties of pure silver films with nanoparticles induced by pulsed-laser dewetting process. Applied Sciences, 10(7): 2260. DOI: https://doi.org/10.3390/app10072260
Lopez-Meneses, A., Plascencia-Jatomea, M., Lizardi- Mendoza, J., Fernandez-Quiroz, D., Rodriguez- Felix, F., Mourino-Perez, R. and Cortez-Rocha, M. 2018. Schinus molle L. essential oil-loaded chitosan nanoparticles: Preparation, characterization, antifungal and anti- aflatoxigenic properties. LWT, 96: 597-603. DOI: https://doi.org/10.1016/j.lwt.2018.06.013
Morones, J. R., Elechiguerra, J. L., Camacho, A., Holt, K., Kouri, J. B., Ramírez, J. T. and Yacaman, M. J. 2005. The bactericidal effect of silver nanoparticles. Nanotechnol., 16(10): 2346. DOI: https://doi.org/10.1088/0957-4484/16/10/059
Mulvaney, P. 1996. Surface plasmon spectroscopy of nanosized metal particles. Langmuir, 12(3): 788-800. DOI: https://doi.org/10.1021/la9502711
Nurliyana, R., Syed Zahir, I., Mustapha Suleiman, K., Aisyah, M. and Kamarul Rahim, K. 2010. Antioxidant study of pulps and peels of dragon fruits: a comparative study. Intl. Food Res. J., 17(2).
Philip, D., Unni, C., Aromal, S. A. and Vidhu, V. 2011. Murraya koenigii leaf-assisted rapid green synthesis of silver and gold nanoparticles. Spectrochimica Acta Part A: Mol. Biomol. Spectroscopy, 78(2): 899-904. DOI: https://doi.org/10.1016/j.saa.2010.12.060
Politano, A. and Chiarello, G. 2009. Collective electronic excitations in systems exhibiting quantum well states. Surface Rev. Letters, 16(02): 171-190. DOI: https://doi.org/10.1142/S0218625X09012482
Putri, C. H., Janica, L., Jannah, M., Ariana, P. P., Tansy, R. V. and Wardhana, Y. R. 2017. Utilization of dragon fruit peel waste as microbial growth media. Proc. 10th CISAK, Daejeon, Korea: 91-95.
Samuel, U. and Guggenbichler, J. 2004. Prevention of catheter-related infections: the potential of a new nano-silver impregnated catheter. Intl. J. Antimicrobial Agents, 23: 75-78. DOI: https://doi.org/10.1016/j.ijantimicag.2003.12.004
Siddiqui, M. R. H., Adil, S., Assal, M., Ali, R. and Al-Warthan, A. 2013. Synthesis and characterization of silver oxide and silver chloride nanoparticles with high thermal stability. Asian J. Chem., 25(6): 3405-3409. DOI: https://doi.org/10.14233/ajchem.2013.13874
Tenore, G. C., Novellino, E. and Basile, A. 2012. Nutraceutical potential and antioxidant benefits of red pitaya (Hylocereus polyrhizus) extracts. J. Functional Foods, 4(1): 129-136. DOI: https://doi.org/10.1016/j.jff.2011.09.003
Velgosová, O., Mražíková, A. and Marcinčáková, R. 2016. Influence of pH on green synthesis of Ag nanoparticles. Materials Letters, 180: 336-339. DOI: https://doi.org/10.1016/j.matlet.2016.04.045
Wei, Y., Pu, J., Zhang, H., Liu, Y., Zhou, F., Zhang, K. and Liu, X. 2017. The laccase gene (LAC1) is essential for Colletotrichum gloeosporioides development and virulence on mango leaves and fruits. Physiol. Mol. Pl. Pathol., 99: 55-64. DOI: https://doi.org/10.1016/j.pmpp.2017.03.005
Widyaningsih, A., Setiyani, O., Umaroh, U., Sofro, M. A. U. and Amri, F. 2017. Effect of consuming red dragon fruit (Hylocereus costaricensis) juice on the levels of hemoglobin and erythrocyte among pregnant women. Belitung Nursing J., 3(3): 255-264. DOI: https://doi.org/10.33546/bnj.97
Downloads
Published
Issue
Section
License
Copyright (c) 2023 S Gowda , S Sriram
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Authors retain copyright. Articles published are made available as open access articles, distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original author and source are credited.
This journal permits and encourages authors to share their submitted versions (preprints), accepted versions (postprints) and/or published versions (publisher versions) freely under the CC BY-NC-SA 4.0 license while providing bibliographic details that credit, if applicable.