Dragon fruit peel extract mediated green synthesis of silver nanoparticles and their antifungal activity against Colletotrichum truncatum causing anthracnose in chilli

Authors

  • S Gowda Jain University, Bengaluru - 560027, Karnataka, India & ICAR IIHR, Bengaluru
  • S Sriram ICAR-Indian Institute of Horticultural Research, Hesaraghatta Lake Post, Bengaluru - 560089, Karnataka, India

DOI:

https://doi.org/10.24154/jhs.v18i1.2165

Keywords:

Anthracnose, antifungal activity, chilli, colletotrichum truncatum, dragon fruit, green synthesis, silver nanoparticle

Abstract

Plant extracts have been used as reducing and stabilising agents to synthesise various metal-based nanoparticles due to their cost-effective and eco-friendly nature. In the present work, a green and environment-friendly method is adopted for synthesising silver nanoparticles (Ag NPs) using a biowaste of dragon fruit (Hylocereus spp.) peel aqueous extract at 80ºC in an alkaline condition. The Ag NPs were characterised through various analytical and microscopic techniques. The UV-Vis spectra of Ag NPs showed a characteristic peak between 400 - 410 nm. Transmission and scanning electron microscopic studies confirmed spherical monodispersed particles with an average size of 7 nm. Energy-dispersive X-ray spectroscopy (EDX) confirmed the presence of silver and silver chloride among the principal elements. The X-ray powder diffraction (XRD) spectra showed the crystalline nature of synthesised silver and silver chloride nanoparticles. The synthesised nanoparticles showed potential antifungal activity against Colletotrichum truncatum spores in both in vitro conidial germination and spread plate assays. The efficacy of the synthesised NPs confirmed that these NPs could be used as potential antifungal agents against C. truncatum to control anthracnose in chilli.

Downloads

Download data is not yet available.

References

Abirami, K., Swain, S., Baskaran, V., Venkatesan, K., Sakthivel, K. and Bommayasamy, N. 2021. Distinguishing three Dragon fruit (Hylocereus spp.) species grown in Andaman and Nicobar Islands of India using morphological, biochemical and molecular traits. Sci. Rep., 11(1): 1-14. DOI: https://doi.org/10.1038/s41598-021-81682-x

Aguilar-Mendez, M., San Martín-Martínez, E., Ortega-Arroyo, L., Cobian-Portillo, G. and Sanchez-Espindola, E. 2011. Synthesis and characterization of silver nanoparticles: effect on phytopathogen Colletotrichum gloesporioides. J. Nanoparticle Res., 13(6): 2525-2532. DOI: https://doi.org/10.1007/s11051-010-0145-6

Aminuzzaman, M., Ng, P. S., Goh, W.-S., Ogawa, S. and Watanabe, A. 2019. Value-adding to dragon fruit (Hylocereus polyrhizus) peel biowaste: green synthesis of ZnO nanoparticles and their characterization. Inorganic Nano-Metal Chem., 49(11): 401-411. DOI: https://doi.org/10.1080/24701556.2019.1661464

Awwad, A. M., Salem, N. M., Ibrahim, Q. M. and Abdeen, A. O. 2015. Phytochemical fabrication and characterization of silver/silver chloride nanoparticles using Albizia julibrissin flowers extract. Adv. Mater. Lett, 6(8): 726-730. DOI: https://doi.org/10.5185/amlett.2015.5816

Chowdappa, P. and Gowda, S. 2013. Nanotechnology in crop protection: Status and scope. Pest Manage. Hortic. Ecosystems, 19(2): 131-151.

Chowdappa, P., Gowda, S., Chethana, C. and Madhura, S. 2014. Antifungal activity of chitosan-silver nanoparticle composite against Colletotrichum gloeosporioides associated with mango anthracnose. Af. J. Microbiol. Res., 8(17): 1803-1812. DOI: https://doi.org/10.5897/AJMR2013.6584

Devi, T. B., Ahmaruzzaman, M. and Begum, S. 2016. A rapid, facile and green synthesis of Ag@ AgCl nanoparticles for the effective reduction of 2, 4-dinitrophenyl hydrazine. New J Chem., 40(2): 1497-1506. DOI: https://doi.org/10.1039/C5NJ02367J

Gowda, S. and Sriram, S. 2020. Current status of nanotechnology application in management of the complex fungal pathogen Colletotrichum– a review. Sydowia, 72: 275.

Haes, A. J., Zou, S., Schatz, G. C. and Van Duyne, R. P. 2004. A nanoscale optical biosensor: The long range distance dependence of the localized surface plasmon resonance of noble metal nanoparticles. J. Physical Chem. B., 108(1): 109-116. DOI: https://doi.org/10.1021/jp0361327

Hu, X., Zhang, X., Ngo, H. H., Guo, W., Wen, H., Li, C., Zhang, Y. and Ma, C. 2020. Comparison study on the ammonium adsorption of the biochars derived from different kinds of fruit peel. Sci. Total Envi., 707: 135544. DOI: https://doi.org/10.1016/j.scitotenv.2019.135544

Hua, Q., Chen, C., Zur, N. T., Wang, H., Wu, J., Chen, J., Zhang, Z., Zhao, J., Hu, G. and Qin, Y. 2018. Metabolomic characterization of pitaya fruit from three red-skinned cultivars with different pulp colors. Plant Physiol. Biochem., 126: 117-125. DOI: https://doi.org/10.1016/j.plaphy.2018.02.027

Hwang, E. T., Lee, J. H., Chae, Y. J., Kim, Y. S., Kim, B. C., Sang, B. I. and Gu, M. B. 2008. Analysis of the toxic mode of action of silver nanoparticles using stress specific bioluminescent bacteria. Small, 4(6): 746-750. DOI: https://doi.org/10.1002/smll.200700954

Iravani, S. and Zolfaghari, B. 2013. Green synthesis of silver nanoparticles using Pinus eldarica bark extract. BioMed Res. Intl., http:// dx.doi.org/10.1155/2013/639725. DOI: https://doi.org/10.1155/2013/639725

Jawad, A. H., Kadhum, A. M. and Ngoh, Y. 2018. Applicability of dragon fruit (Hylocereus polyrhizus) peels as low-cost biosorbent for adsorption of methylene blue from aqueous solution: kinetics, equilibrium and thermodynamics studies. Desalin Water Treat, 109: 231-240. DOI: https://doi.org/10.5004/dwt.2018.21976

Jiang, Y. L., Chen, L. Y., Lee, T. C. and Chang, P. T. 2020. Improving postharvest storage of fresh red-fleshed pitaya (Hylocereus polyrhizus sp.) fruit by pre-harvest application of CPPU. Sci. Horti., 273: 109646. DOI: https://doi.org/10.1016/j.scienta.2020.109646

Kedi, P. B. E., Meva, F. E. a., Kotsedi, L., Nguemfo, E. L., Zangueu, C. B., Ntoumba, A. A., Mohamed, H. E. A., Dongmo, A. B. and Maaza, M. 2018. Eco-friendly synthesis, characterization, in vitro and in vivo anti- inflammatory activity of silver nanoparticle- mediated Selaginella myosurus aqueous extract. Intl. J. Nanomed., 13: 8537. DOI: https://doi.org/10.2147/IJN.S174530

Lamsal, K., Kim, S. W., Jung, J. H., Kim, Y. S., Kim, K. S. and Lee, Y. S. 2011. Application of silver nanoparticles for the control of Colletotrichum species in vitro and pepper anthracnose disease in field. Mycobiol., 39(3): 194-199. DOI: https://doi.org/10.5941/MYCO.2011.39.3.194

Lin, Y.-H., Wang, J.-J., Wang, Y.-T., Lin, H.-K. and Lin, Y.-J. 2020. Antifungal properties of pure silver films with nanoparticles induced by pulsed-laser dewetting process. Applied Sciences, 10(7): 2260. DOI: https://doi.org/10.3390/app10072260

Lopez-Meneses, A., Plascencia-Jatomea, M., Lizardi- Mendoza, J., Fernandez-Quiroz, D., Rodriguez- Felix, F., Mourino-Perez, R. and Cortez-Rocha, M. 2018. Schinus molle L. essential oil-loaded chitosan nanoparticles: Preparation, characterization, antifungal and anti- aflatoxigenic properties. LWT, 96: 597-603. DOI: https://doi.org/10.1016/j.lwt.2018.06.013

Morones, J. R., Elechiguerra, J. L., Camacho, A., Holt, K., Kouri, J. B., Ramírez, J. T. and Yacaman, M. J. 2005. The bactericidal effect of silver nanoparticles. Nanotechnol., 16(10): 2346. DOI: https://doi.org/10.1088/0957-4484/16/10/059

Mulvaney, P. 1996. Surface plasmon spectroscopy of nanosized metal particles. Langmuir, 12(3): 788-800. DOI: https://doi.org/10.1021/la9502711

Nurliyana, R., Syed Zahir, I., Mustapha Suleiman, K., Aisyah, M. and Kamarul Rahim, K. 2010. Antioxidant study of pulps and peels of dragon fruits: a comparative study. Intl. Food Res. J., 17(2).

Philip, D., Unni, C., Aromal, S. A. and Vidhu, V. 2011. Murraya koenigii leaf-assisted rapid green synthesis of silver and gold nanoparticles. Spectrochimica Acta Part A: Mol. Biomol. Spectroscopy, 78(2): 899-904. DOI: https://doi.org/10.1016/j.saa.2010.12.060

Politano, A. and Chiarello, G. 2009. Collective electronic excitations in systems exhibiting quantum well states. Surface Rev. Letters, 16(02): 171-190. DOI: https://doi.org/10.1142/S0218625X09012482

Putri, C. H., Janica, L., Jannah, M., Ariana, P. P., Tansy, R. V. and Wardhana, Y. R. 2017. Utilization of dragon fruit peel waste as microbial growth media. Proc. 10th CISAK, Daejeon, Korea: 91-95.

Samuel, U. and Guggenbichler, J. 2004. Prevention of catheter-related infections: the potential of a new nano-silver impregnated catheter. Intl. J. Antimicrobial Agents, 23: 75-78. DOI: https://doi.org/10.1016/j.ijantimicag.2003.12.004

Siddiqui, M. R. H., Adil, S., Assal, M., Ali, R. and Al-Warthan, A. 2013. Synthesis and characterization of silver oxide and silver chloride nanoparticles with high thermal stability. Asian J. Chem., 25(6): 3405-3409. DOI: https://doi.org/10.14233/ajchem.2013.13874

Tenore, G. C., Novellino, E. and Basile, A. 2012. Nutraceutical potential and antioxidant benefits of red pitaya (Hylocereus polyrhizus) extracts. J. Functional Foods, 4(1): 129-136. DOI: https://doi.org/10.1016/j.jff.2011.09.003

Velgosová, O., Mražíková, A. and Marcinčáková, R. 2016. Influence of pH on green synthesis of Ag nanoparticles. Materials Letters, 180: 336-339. DOI: https://doi.org/10.1016/j.matlet.2016.04.045

Wei, Y., Pu, J., Zhang, H., Liu, Y., Zhou, F., Zhang, K. and Liu, X. 2017. The laccase gene (LAC1) is essential for Colletotrichum gloeosporioides development and virulence on mango leaves and fruits. Physiol. Mol. Pl. Pathol., 99: 55-64. DOI: https://doi.org/10.1016/j.pmpp.2017.03.005

Widyaningsih, A., Setiyani, O., Umaroh, U., Sofro, M. A. U. and Amri, F. 2017. Effect of consuming red dragon fruit (Hylocereus costaricensis) juice on the levels of hemoglobin and erythrocyte among pregnant women. Belitung Nursing J., 3(3): 255-264. DOI: https://doi.org/10.33546/bnj.97

Downloads

Published

30-06-2023

Issue

Section

Original Research Papers

How to Cite

Gowda, S., & Sriram, S. (2023). Dragon fruit peel extract mediated green synthesis of silver nanoparticles and their antifungal activity against Colletotrichum truncatum causing anthracnose in chilli. Journal of Horticultural Sciences, 18(1), 201-208. https://doi.org/10.24154/jhs.v18i1.2165

Similar Articles

1-10 of 311

You may also start an advanced similarity search for this article.