Biochemical characterization of gamma-ray induced mutants in mango

Authors

  • N Perveen ICAR-Indian Institute of Horticultural Research, Bengaluru - 560089, India https://orcid.org/0000-0001-8967-763X
  • M R Dinesh ICAR-Indian Institute of Horticultural Research, Bengaluru - 560089, India https://orcid.org/0000-0003-1570-8514
  • M Sankaran ICAR-Indian Institute of Horticultural Research, Bengaluru - 560089, India.
  • K S Shivashankara ICAR-Indian Institute of Horticultural Research, Bengaluru - 560089, India.

DOI:

https://doi.org/10.24154/jhs.v18i2.1841

Keywords:

Gamma irradiation, HS-SPME-GC/MS, mango, monoterpenes, sesquiterpenes, volatile profiling

Abstract

The volatile compound (VC) compositions of putative mutants were estimated and compared with the untreated seedlings and mother plants of mango genotype Bappakkai. Sesquiterpenes were the major VC detected in mother plants, control plants and putative mutant samples viz., BM4, BM5 and BM6, while, monoterpenes dominated the volatile fractions of other three putative mutant samples. A positive and significantly high correlation between all the mother plants, between mother plants and control seedlings as well as between the control seedlings, suggests a high level of similarity or lack of variability between mother plants and control seedlings, indicating that they might be of nucellar origin. Hence, we conclude that volatile profiling can be used as a biochemical marker for characterization and validation of putative mutants in polyembryonic mango genotypes.

Downloads

Download data is not yet available.

References

Ali, S., Plotto, A., Scully, B. T., Wood, D., Stover, E., Owens, N., & Bai, J. (2020). Fatty acid and volatile organic compound profiling of avocado germplasm grown under East Central Florida conditions. Scientia Horticulturae, 261, 109008. https://doi.org/10.1016/j.scienta.2019.109008

Alinezhad, M., Hojjati, M., Barzegar, H., Shahbazi, S., & Askari, H. (2021). Effect of gamma irradiation on the physicochemical properties of pistachio (Pistacia vera L.) nuts. Journal of Food Measurement and Characterization, 15(1), 199-209. https://doi.org/10.1007/s11694-020-00620-z

Augustyn, W. A., Botha, B. M., Combrinck, S., & Du Plooy, W. (2010). Correlation of volatile profiles of twenty mango cultivars with their susceptibilities to mango gall fly infestation. South African Journal of Botany, 76(4), 710-716.

Li, L., Ma, X. W., Zhan, R. L., Wu, H. X., Yao, Q. S., Xu, W. T., & Wang, S. B. (2017). Profiling of volatile fragrant components in a mini-core collection of mango germplasms from seven countries. PLoS One, 12(12), e0187487. https://doi.org/10.1371/journal.pone.0187487.

Oliveira, A. P., Silva, L. R., de Pinho, P. G., Gil-Izquierdo, A., Valentão, P., Silva, B. M., & Andrade, P. B. (2010). Volatile profiling of Ficus carica varieties by HS-SPME and GC–MS. Food Chemistry, 123(2), 548-557. https://doi.org/10.1016/j.foodchem.2010.04.064

Pandit, S. S., Chidley, H. G., Kulkarni, R. S., et al. (2009). Cultivar relationships in mango based on fruit volatile profiles. Food Chemistry, 114, 363-372. https://doi.org/10.1016/j.foodchem.2008.09.107

Perveen, N., Dinesh, M. R., Sankaran, M., Shivashankara, K. S., & Venugopalan, R. (2022). Characterization and evaluation of putative mutant populations of polyembryonic mango genotype Nekkare for dwarfing rootstock traits. Journal of Horticultural Sciences, 17(2), 261-271. https://doi.org/10.24154/jhs.v17i2.1456.

Perveen, N. (2022). Variability enhancement in polyembryonic genotypes of mango (Mangifera indica L.) [Doctoral dissertation, ICAR-Indian Agricultural Research Institute, New Delhi].

Pino, J. A., Mesa, J., Muñoz, Y., et al. (2005). Volatile components from mango (Mangifera indica L.) cultivars. Journal of Agricultural and Food Chemistry, 53, 2213-2223. https://doi.org/10.1021/jf0402633

Rencher, A. C. (1995). Methods of multivariate analysis. New York: Wiley.

Rime, J., Dinesh, M. R., Sankaran, M., Shivashankara, K. S., Rekha, A., & Ravishankar, K. V. (2019). Evaluation and characterization of EMS derived mutant populations in mango. Scientia Horticulturae, 254, 55-60. https://doi.org/10.1016/j.scienta.2019.04.015

Roberts, G., & Spadafora, N. D. (2020). Analysis of apple flavours: The use of volatile organic compounds to address cultivar differences and the correlation between consumer appreciation and aroma profiling. Journal of Food Quality. https://doi.org/10.1155/2020/8497259

Ryu, J., Lyu, J. I., Kim, D. G., Kim, J. M., Jo, Y. D., Kang, S. Y., Kim, J. B., Ahn, J. W., & Kim, S. H. (2020). Comparative analysis of volatile compounds of gamma-irradiated mutants of rose (Rosa hybrida). Plants, 9(9). https://doi.org/10.3390/plants9091221.

Shimizu, K., Matsukawa, T., Kanematsu, R., Itoh, K., Kanzaki, S., Shigeoka, S., & Kajiyama, S. I. (2021). Volatile profiling of fruits of 17 mango cultivars by HS-SPME-GC/MS combined with principal component analysis. Bioscience, Biotechnology and Biochemistry, 85(8), 1789-1797. https://doi.org/10.1093/bbb/zbab097.

Srivastava, K. C., Rajput, M. S., Singh, N. P., & Lal, B. (1988). Rootstock studies in mango cv. Dashehari. Acta Horticulturae, 231, 216-219. https://doi.org/10.1093/bbb/zbab097

Vivaldo, G., Masi, E., Taiti, C., Caldarelli, G., & Mancuso, S. (2017). The network of plants volatile organic compounds. Scientific Reports, 7(1), 1-18. doi:10.1038/s41598-017-10975-x

Downloads

Published

31-12-2023

Issue

Section

Original Research Papers

How to Cite

Perveen, N., Dinesh, M. R., Sankaran, M., & Shivashankara, K. S. (2023). Biochemical characterization of gamma-ray induced mutants in mango. Journal of Horticultural Sciences, 18(2). https://doi.org/10.24154/jhs.v18i2.1841

Similar Articles

1-10 of 116

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)

1 2 3 4 > >>