Changes in sugars in organs of Phalaenopsis florets during different flowering stages of intact plant inflorescences
DOI:
https://doi.org/10.24154/jhs.v18i2.1204Keywords:
floret; flowering stages; Phalaenopsis; sugarsAbstract
Phalaenopsis flowers possess extraordinary longevity. However, the changes of sugars, including glucose, fructose and sucrose, in organs of floret during different flowering stages of inflorescences attached to a plant have not been reported. To accomplish this, the sugars level in different floret organs were studied at 4 different stages (1. half open, 2. bloom 1 month, 3. bloom 2 months, and 4. wilting). Glucose and fructose were the major soluble sugars in the sepal, petal, labellum, pedicel, and remainder (including the column, anther cap, pollinia, and stigma) of a floret, but their levels decreased from stages 1 to 4. However, the amount of sucrose increased significantly at stage 4 in the sepal, petal, pedicel, and remainder, with the exception that the labellum remained constant throughout all stages. These results demonstrate that glucose and fructose are the major solutes that contribute to floret opening and blooming, and sucrose is salvaged and exported before floret senescence for opening other florets on the same inflorescence. Meanwhile, labellum possesses different sugar metabolism from other organs of Phalaenopsis floret.
References
Bieleski, R. L. (1995). Onset of phloem export from senescent petals of daylily. Plant Physiology, 109, 557–565. https://doi.org/10.1104/pp.109.2.557
Dar, R. A., Tahir, I., & Ahmad, S. S. (2015). Is the biochemical mechanism of petal senescence similar within a genus? A case study of Dianthus. Horticulture, Environment, and Biotechnology, 56, 654–661. http://dx.doi.org/10.1007/s13580-015-1068-z
Gibson, S. I. (2004). Sugar and phytohormone response pathways: Navigating a signaling network. Journal of Experimental Botany, 55, 253–264. http://dx.doi.org/10.1093/jxb/erh048
Halevy, A. H., Porat, R., Spiegelstein, H., Borochov, A., Botha, L., & Whitehead, C. S. (1996). Short-chain saturated fatty acids in the regulation of pollination-induced ethylene sensitivity of Phalaenopsis flowers. Physiologia Plantarum, 97, 469–474. http://dx .doi.org/1 0. 1111 /j.1 39 9-30 54 .1 99 6.tb00505.x
Ketsa, S., & Wongs-aree, C. (1995). The role of open florets in maximizing flower bud opening of Dendrobium held in the preservative solution. Acta Horticulturae, 405, 381–388. http://dx.doi.org/10.17660/ActaHortic.1995.405.49
Majidian, N., Naderi, R., Babalar, M., Nazeri, V., & Majidian, M. (2014). Evaluation of relation between carbohydrate with development and senescence in lilium LA hybrid cv. “CebDazzle”. Iranian Journal of Horticultural Science, 45, 103–114. https://ijhs.ut.ac.ir/a r t icle_ 5 0 9 3 8 . h t ml?l a ng= en # :~ :t ex t =20.1001.1.2008482.1393.45.1.10.2
O’Neill, S. D., Nadeau, J. A., Zhang, X. S., Bui, A. Q., & Halevy, A. H. (1993). Inter organ regulation of ethylene biosynthetic genes by pollination. Plant Cell, 5, 419–432. https://doi.org/10.1105/tpc.5.4.419
Ratchanee, P., Ketsa, S., & van Doorn, W. G. (2013). Sucrose feeding of cut Dendrobium inflorescences promotes bud opening, inhibits abscission of open flowers, and delays tepal senescence. Postharvest Biology and Technology, 77, 7–10. http://dx.doi.org/10.1016/j.postharvbio.2012.09.014
Shu, Z., Tao, Y. W., Tang, D. Q., Shi, Y. M., & Qian, H. M. (2010). Distinct respiration and physiological changes during flower development and senescence in two Freesia cultivars. HortScience, 45, 1088–1092. http://dx.doi.org/10.21273/HORTSCI.45.7.1088
Stead, A. D., & Moore, K. G. (1997). Flower development and senescence in Digitalis purpurea L., cv. Foxy. Annals Botany, 41, 283–292. http://dx.doi.org/10.1093/oxfordjournals.aob.a085290
Trivellini, A., Ferrante, A., Vernieri, P., Carmassi, G., & Serra, G. (2011). Spatial and temporal distribution of mineral nutrients and sugars throughout the lifespan of Hibiscus rosa- sinensis L. flower. Central European Journal of Biology, 6, 365–375. DOI:10.2478/s11535-011-0025-9
Wani, M., Saha, S., Bidwai, J., & Khetmalas, M. (2012). Changes in carbohydrate levels and associated enzyme activities during postharvest vase life of Gerbera jamesonii cv. Danalin flowers as influenced by mineral salts. Journal of Horticulture Letters, 2, 8–11. http://www.bioinfopublication.org/fil.
Yamane, K., Abiru, S., Fujishige, N., Sakiyama, R., & Ogata, R. (1993). Export of soluble sugars and increase membrane permeability of gladiolus florets during senescence. Journal of the Japanese Society for Horticultural Science, 62, 575–580. http://dx.doi.org/10.2503/jjshs.62.575
Downloads
Published
Issue
Section
License
Copyright (c) 2023 Erh Hsuan Hsiang, You Siang Liao, Ji Yao. Chen, Yu Chuan. Chen, Heng-Long Wang, Chao Lin Chang, Jeng Der Chung
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Authors retain copyright. Articles published are made available as open access articles, distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original author and source are credited.
This journal permits and encourages authors to share their submitted versions (preprints), accepted versions (postprints) and/or published versions (publisher versions) freely under the CC BY-NC-SA 4.0 license while providing bibliographic details that credit, if applicable.