RGAP molecular marker for resistance against yellow mosaic disease in ridge gourd [Luffa acutangula (L.) Roxb.]

Authors

  • Manpreet Kaur ICAR-Indian Institute of Horticultural Research Author
  • Varalakshmi B ICAR-Indian Institute of Horticultural Research Author
  • Kumar M ICAR-Indian Institute of Horticultural Research Author
  • Lakshmana Reddy D C ICAR-Indian Institute of Horticultural Research Author
  • Mahesha B ICAR-Indian Institute of Horticultural Research Author
  • Pitchhaimuthu M ICAR-Indian Institute of Horticultural Research Author

DOI:

https://doi.org/10.24154/jhs.v16i2.1113

Keywords:

Ridge gourd, yellow mosaic, ToLCNDV, resistance, molecular breeding

Abstract

Yellow mosaic disease caused by Tomato leaf curl New Delhi virus (ToLCNDV) causes 100 percent losses in ridge gourd under epidemic conditions, particularly in the tropics and sub-tropics of India. Plant breeding approaches led by the marker-assisted selection have gained increased momentum in virus resistance breeding to hasten the development of resistant varieties. In the present study, an effort has been made to identify molecular markers linked to yellow mosaic disease resistance loci in an F2 population derived from a cross between susceptible ‘Arka Prasan’ and resistant ‘IIHR-Sel-1’ of ridge gourd. All the molecular markers were amplified in parents, and one polymorphic marker clearly distinguished the contrasting parents. The primers LaRGAP 63 produced a polymorphic DNA fragment that co-segregated with yellow mosaic disease reaction phenotypically in the F2 population. The identified marker will be helpful to the breeders for introgression of resistance loci into the elite background.

Downloads

Download data is not yet available.

References

Alam A.K.M.M., Somta P. and Srinives P. 2014. Identification and confirmation of quantitative trait loci controlling resistance to mungbean yellow mosaic disease in mungbean [Vigna radiata (L.) Wilczek]. Molecular Breeding, 34(3):1497-1506.DOI: https://doi.org/10.1007/s11032-014-0133-0.

Chague V., Mercier J., Guenard M. 1997. Identification of RAPD markers linked to a locus involved in quantitative resistance to TYLCV in tomato by bulked segregant analysis. Theoretical and Applied Genetics, 95(4): 671-677. DOI: https://doi.org/10.1007/s001220050611

De-Castro A.P., Blanca J.M., Diaz M.J. and Nuez F. 2007. Identification of a CAPS marker tightly linked to the Tomato yellow leaf curl disease resistance gene Ty-1 in tomato. European Journal of Plant Pathology, 117(4):347-356 DOI:https://doi.org/10.1007/s10658-007-9103-2.

Doyle J.J., Doyle J.L. 1990. Isolation of plant DNA from fresh tissue. Focus. 12(1):13-15.

Garcia B.E., Graham E., JensenK.S., Hanson P., Mejia L.and Maxwell D.P. 2007. Co-dominant SCAR marker for detection of the begomovirusresistance Ty-2 locus derived from Solanum habrochaites in tomato germplasm. Tomato Genetics Cooperative, 57:21-24.

Gupta S., Gupta D.S., Anjum T.K., Pratap A. and Kumar J. 2013. Inheritance and molecular tagging of MYMIV resistance gene in blackgram (Vigna mungo L. Hepper). Euphytica, 193(1):27-37.DOI:https://doi.org/10.1007/s10681-013-0884-4.

Hoque S., Rabbani M.G. 2009. Assessment of genetic relationship among landraces of Bangladeshi ridge gourd (Luffa acutangular Roxb.) using RAPD markers. Journal of Scientific Research, 1(3):615-623.DOI:10.3329/jsr.v1i3.1968

Hutton S.F., Scott J.W., Schuster D.J. 2012. Recessive resistance to Tomato yellow leaf curl virus from the tomato cultivar Tyking is located in the same region as Ty-5 on chromosome 4. Hort Science. 47(3):324-327.

Islam S., Munshi A.D., Mandal B., Kumar R. and Behera T.K. 2010. Genetics of resistance in Luffa cylindrica Roem. against Tomato leaf curl New Delhi virus. Euphytica. 174(1):83- 89.DOI: https://doi.org/10.1007/s10681-010-0138-7.

Islam S., Munshi A.D., Verma M., Arya L., Mandal B., Behera T.K., Kumar R. and Lal S.K. 2011. Screening of Luffa cylindrica Roem. for resistance against Tomato leaf curl New Delhi virus, inheritance of resistance, and identification of SRAP markers linked to the single dominant resistance gene. J. Horti Sci and Biotech, 86(3):661-667. DOI: https://doi.org/10.1080/14620316.2011.11512819

Ji Y., Schuster D.J., Scott J.W. 2007a. Ty-3, a begomovirus resistance locus near the Tomato yellow leaf curl virus resistance locus Ty-1 on chromosome 6 of tomato. Molecular Breeding. 20(3):271-284.DOI:https://doi.org/10.1007/

s11032-007-9089-7

Ji Y., Scott J.W., Hanson P., Graham E.and Maxwell D.P. 2007b. Sources of resistance, inheritance, and location of genetic loci conferring resistance to members of the tomato-infecting begomoviruses. In: Czosnek H, (ed). Tomato yellow leaf curl virus disease. Springer, The Netherlands. 343-362.DOI: https://doi.org/10.1007/978-1-4020-4769-5_20.

Ji Y., Scott J.W., Schuster D.J.and Maxwell D.P. 2009. Molecular mapping of Ty-4, a new Tomato yellow leaf curl virus resistance locus on chromosome 3 of tomato. J. Americ. Soc. Horti. Sci. 134(2):281-288. DOI:https://doi.org/10.21273/JASHS.134.2.281

Kanazin V., Marek L.F., Shoemaker R.C. 1996. Resistance gene analogs are conserved and clustered in soybean. Proceedings of the National Academy of Sciences of the United States of America. 93(21):11746-11750. DOI:10.1073/pnas.93.21.11746

Karthik K. 2016. Genetic variability and isolation, characterization of resistant gene analogs in tomato leaf curl New Delhi virus (ToLCNDV) resistant advanced inbred lines of ridge gourd [Luffa acutangula (L.) Roxb.]. M.Sc. thesis.

UHS, Bagalkot, Karnataka.

Kaur M., Varalakshmi B., Mahesha B. 2020. Mechanical sap transmission of Tomato leaf curl New Delhi virus infecting ridge gourd [Luffa acutangula (L.) Roxb.] in south India. International Journal of Chemical Studies. 8(3):1867-1870. DOI: https://doi.org/10.22271/chemi.2020.v8.i3z.9477

Kaur M., Varalakshmi B., Pitchaimuthu M. and Mahesha B. 2021a. Screening Luffa germplasm and advance breeding lines for resistance to tomato leaf curl New Delhi virus. Journal of General Plant Pathology. 87(5), 287-294 DOI: https://doi.org/10.1007/s10327-021-01010-z

Kaur M., Varalakshmi B., Kumar M., Rao E.S., Pitchaimuthu M., Mahesha B., Venugopalan R.and Reddy D.C.L. 2021b. Genetic analysis of yellow mosaic disease resistance in loofah. Australasian Plant Pathology, 50 (4), 407-414 DOI: https://doi.org/10.1007/s13313-021-00787-z

Leister D., Ballvora A., Salamini F. and Gebhardt C. 1996. A PCR-based approach for isolating pathogen resistance genes from potato with potential for wide application in plants. Nature Genetics, 14(4): 421-429. DOI:10.1038/ng1296-421.

Lopez C., Ferriol M., Pico M. 2015. Mechanical transmission of tomato leaf curl New Delhi virus to cucurbit germplasm: Selection of tolerance sources in Cucumis melo. Euphytica, 204(3):679-691.https://doi.org/10.100/s10681-

-1371-x

Padidam M., Beachy R.N., Fauquet C.M. 1995. Tomato leaf curl geminivirus from India has a bipartite genome and coat protein is not essential for infectivity. J. Gen. Viro, 76(1):25-35.

Panse V.G., Sukhatme P.V. 1985. Statistical methods for Agricultural workers. 4th eds. ICAR New Delhi pp. 347.

Prasanna H.C., Kashyap S.P., Krishna R., Sinha D.P., Reddy S. and Malathi V.G. 2015a. Marker assisted selection of TY-2 and Ty-3 carrying tomato lines and their implications in breeding tomato leaf curl disease resistant hybrids. Euphytica, 204(2):407-418.DOI:10.1007/s10681-015-1357-8

Prasanna H.C., Sinha D., Rai G., Krishna R., Kashyap S.P., Singh N., Singh N.K., Singh M. and Malathi V.G. 2015b. Pyramiding Ty-2 and Ty- 3 genes for resistance to monopartite and bipartite Tomato leaf curl viruses of India. Plant Pathology, 64(2):256-264.DOI:10.1111/ppa.12267

Rai V.P., Kumar R., Singh S.P., Kumar S., Singh M.and Rai M. 2014. Monogenic recessive resistance to pepper leaf curl virus in an interspecific cross of capsicum. Scientia Horticulturae, 172:34-38. DOI: https://doi.org/10.1016/j.scienta.2014.03.039

Romay G., Pitrat M., Lecoq H., Wipf-Scheibel C., Millot P., Girardot G.and Desbiez C. 2019. Resistance against melon chlorotic mosaic virus and Tomato leaf curl New Delhi virus in melon. Plant Disease. 103(11):2913-2919. DOI: https:/ /doi.org/10.1094/PDIS-02-19-0298-RE

Saez C., Martinez C., Ferriol M., Manzano S., Velasco L., Jamilena M., Lopez C.and Pico B. 2016. Resistance to Tomato leaf curl New Delhi

virus in Cucurbita spp. Annals of Applied Biology. 169(1):91-105.DOI: https://doi.org/10.1111/aab.12283

Saez C., Martinez C., Montero-Pau J., Esteras C., Sifres A., Blanca J., Ferriol M., Lopez C.and Pico B. 2020. A major QTL located in chromosome 8 of Cucurbita moschata is responsible for resistance to Tomato leaf curl New Delhi virus. Frontier in Plant Sciences, 11:207-225.DOI: 10.3389/fpls.2020.00207

Saha D., Rana R.S., Sureja A.K, Verma M., Arya L.and Munshi, A.D. 2013. Cloning and characterization of NBS-LRR encoding resistance gene candidates from Tomato leaf curl New Delhi virus resistant genotype of Luffa cylindrica Roem. Physiological and Molecular Plant Pathology, 81(1):107-117. DOI: https://doi.org/10.1016/j.pmpp.2012.11.007

Singh C.M., Pratap A., Gupta S., Biradar R.S. and Singh N.P. 2020. Association mapping for mungbean yellow mosaic India virus resistance in mungbean (Vigna radiata L. Wilczek). 3Biotech, 10:33.DOI: https://doi.org/10.1007/ s13205-019-2035-7

Sohrab S.S. 2005. Variability in the geminiviruses infecting cucurbits. Ph.D. thesis. Jamia Milia Islamia, New Delhi.

Souframanien J., Gopalakrishna T. 2006. ISSR and SCAR markers linked to the mungbean yellow mosaic virus (MYMV) resistance gene in black gram [Vigna mungo (L.) Hepper]. Plant Breeding, 125(6):619-622. DOI: https://doi.org/

1111/j.1439-0523.2006.01260.x

Speulman E., Bouchez D., Holub E.B. and Beynon J.L. 1998. Disease resistance gene homologs correlate with disease resistance loci of Arabidopsis thaliana. The Plant Journal. 14(4 ):4 67- 474 . DO I: 1 0. 1 046 / j. 136 5-313x.1998.00138.x

Spielmeyer W., Huang L., Bariana H., Laroche A., Gill B.S. and Lagudah E.S. 2000. NBS-LRR sequence family is associated with leaf and stripe rust resistance on the end of homoeologous chromosome group 1S of wheat. Theoretical and Applied Genetics. 101(7):1139-1144.DOI:https://doi.org/10.1007/s001220051590

Wu H.B., Gong H., Liu P., He X.L., Luo S.B., Zheng X.M., Zhang C.Y., He X.M. and Luo J.N. 2014. Large scale development of EST-SSR markers in sponge gourd via transcriptome sequencing. Molecular Breeding. 34:1903-1915.DOI: https://doi.org/10.1007/s11032-014-0148-6

Wu H., He X., Gong H., Luo S., Li M., Chen J., Zhang C., Yu T., Huang W. and Luo J. 2016. Genetic linkage map construction and QTL analysis of two interspecific reproductive isolation traits in sponge gourd. Frontier in Plant Sciences.7:980-991.DOI: 10.3389/fpls.2016.00980

Yu Y.G., Buss G.R., Maroof M.A. 1996. Isolation of a superfamily of candidate disease-resistance genes in soybean based on a conserved nucleotide-binding site. Proc. Natt. Acad. Sci. (USA). 93(21):11751-11756.DOI: 10.1073/pnas.93.21.11751

Zaidi S.S., Martin D.P., Amin I., Farooq M. and Mansoor S. 2016. Tomato leaf curl New Delhi virus: a widespread bipartite begomovirus in the territory of monopartite begomoviruses. Molecular Plant Pathology, 18(7):901-911.DOI: 10.1111/mpp.12481

Zamir, D., Ekstein-Michelson, I., Zakay, Y., Navot, N., Zeidan, M., Sarfatti, M., Eshed, Y., Harel, E., Pleban, T., Van-Oss, H., Kedar, N., Rabinowitch, H. D. and Czosnek, H. 1994. Mapping and introgression of a tomato yellow leaf curl virus tolerance gene, Ty-1. Theoretical and Applied Genetics, 88(1): 141-146.DOI https://doi.org/10.1007/BF00225889

Downloads

Published

31-12-2021

Issue

Section

Original Research Papers

How to Cite

Kaur, M., B, V., M, K., D C, L. R. ., B, M., & M, P. (2021). RGAP molecular marker for resistance against yellow mosaic disease in ridge gourd [Luffa acutangula (L.) Roxb.]. Journal of Horticultural Sciences, 16(2), 185-192. https://doi.org/10.24154/jhs.v16i2.1113

Similar Articles

21-30 of 150

You may also start an advanced similarity search for this article.