Morpho-physiological parameters associated with chlorosis resistance to iron deficiency and their effect on yield and related attributes in potato (Solanum tuberosum L.)


  • Clarissa Challam ICAR–Central Potato Research Institute Author
  • S Dutt ICAR–Central Potato Research Institute Author
  • J Sharma ICAR–Central Potato Research Institute, Shimla Author
  • M Raveendran Tamil Nadu Agricultural University, Coimbatore Author
  • D Sudhakar Tamil Nadu Agricultural University, Coimbatore Author



Correlation, Iron-deficiency chlorosis, Morpho-physiological parameters, Potato, Yield


The aim of the study was to assess genotypical differences over different stages for morphophysiological parameters associated with iron (Fe) deficiency and their effect on yield. The factorial pot experiment was comprised of two major factors, i) soil-Fe status of natural vertisol [Fe-sufficient and Fe-deficient soils], and ii) genotypes [CP-3443, CP- 4105, CP-3486 and CP-4069] with differential iron-induced deficiency chlorosis (IDC) response. Data were recorded and associations between different traits were estimated. Under Fe-deficient soil, tolerant genotype (CP-3443) recorded significantly higher chlorophyll content, peroxidase activity in leaves, and better yield compared to susceptible genotypes which verified usefulness as IDC tolerant potato genotypes characteristics.


Download data is not yet available.


Aliche, E.B., Bourke, A. P., Sanchez, M. R., Oortwijn, M., Gerkema, E. d., As, H. V., Visser, R.G.F., and van der Linden, C. G. 2020. Morphological and physiological responses of the potato stem transport tissues to dehydration stress. Planta, 251: 45.

Balakrishnan, K. 2000. Peroxidase activity as an indicator of the iron deficiency in banana. Ind. J. Plant Physi., 5(4): 389-391.

Boamponsem, G. A., Leung, D.W.M., Lister, C. 2017. Insights into resistance to Fe deficiency stress from a comparative study of in vitro-selected novel Fe-efficient and Fe-inefficient potato Plants. Front. Plant Sci., 8:1581.

Boodi, I. H., Pattanashetti, S. K., Biradar, B. D., Naidu, G. K., Chimmad, V. P., Kanatti, A. and Debnath. M.K. 2016. Morpho-physiological parameters associated with iron deficiency chlorosis resistance and their effect on yield and its related traits in groundnut. J. Crop Sci. Biotechnol., 19(2): 177–187.

Braun, H., Fontes, P. C. R., Silva., Finger, T. P., Fernando L., Cecon, P. R., Ferreira, A. P. S. 2016. Carbohydrates Concentration in leaves of potato plants affected by nitrogen fertilization rates. Revista Ceres., 63(2) : 241-248.

Chatterjee, C., Gopal, R. and Dube, B. K. 2006. Impact of iron stress on biomass, yield, metabolism and quality of potato (Solanum tuberosum L.). Sci. Hort., 108:119-140.

Challam, C., Dutt, S., Sharma, J., Bag, T.K., Raveendran, M. and Sudhakar, D. 2021. Screening for iron deficient chlorosis (IDC) tolerant genotypes in potato (Solanum tuberosum, L.) under aeroponic system. Asian J. Microbiol. Biotechnol. Environ. Sci., 23(1): 92-99.

FAO Stat, FAO Stat accessed vide on 12/8/2019

Kalra, Y. P. 1988. Handbook of Methods for Plant Analysis. Boca Raton: CRC press

Li, G. J., H. Song, B. Li, H. J. Kronzucker, and W. M. Shi. 2015. Auxin resistant1 and PINFORMED2 protect lateral root formation in Arabidopsis under iron stress. Plant Physiology 169: 2608–2623.

Li-Xuan, R., Yuan-Mei, Z., Rong-Feng, J. and Fu-Suo. Z. 2005. Mechanisms of bicarbonate induced iron-deficiency chlorosis of peanut on calcareous soils. Acta Ecol. Sinica., 4:795–801

M’sehli, W., Houmani, H., Donninic, S., Zocchi, G., Abdelly, C. and Gharsalli. M. 2014. Iron deficiency tolerance at leaf level in Medicago ciliaris plants. Am. J. Plant Sci., 5: 2541- 2553.

Mahender, A., Swamy, B.P.M., Anandan, A., Ali, J. 2019. Tolerance of iron-deficient and -toxic soil conditions in rice. Plants, 8(2): 31

Samdur, M.Y., Singh, A. L., Mathur, R. K., Manivel, P., Chikani, B. M., Gor, H. K. and. Khan, M. A. 2000. Field evaluation of chlorophyll meter for screening groundnut (Arachis hypogaea L.) genotypes tolerant to iron-deficiency chlorosis. Cur. Sci., 79(2): 211–214.

Samdur, M.Y., Mathur, R. K., Manivel, P., Singh, A. L., Bandyopadhyay, A. and Chikani. B.M. 1999. Screening of some advanced breeding lines of groundnut (Arachis hypogaea) for tolerance of lime-induced iron-deficiency chlorosis. Indian J. Agri. Sci., 69(10):722–725.

Simko, I., Van Den Berg, J. H., Vreugdenhil, D. and Ewing. E. E. 2008. Mapping loci for chlorosis associated with chlorophyll b deficiency in potato. Euphytica, 162:99-107.

Singh, M. V. 2009. Micronutrient nutritional problems in soils of India and improvement for human and animal health. Indian J. Fertil., 5: 11–56

Singh, M., Chaudhary, S. R., Sharma S. R. and Rathore. M. S. 2004. Effect of some micronutrients on content and uptake by chickpea (Cicer arietinum). Agri. Sci. Dig., 24(4): 268-270.

Terry, N. and J. Abadia. 1986. Function of iron in chloroplasts. J. Plant Nutr., 9(3):609–646.

Xu, J. Q., Chen, X. L. and Yu, F. T.017. Effects of BPDS-Fe(a!) on the difference in tolerance to iron deficiency of maize seedlings under different ammonium/nitrate ratios. Sci. Agr. Sinica., 50: 1223–1233.

Zou, N., Li, B. H., Chen, H., Su, Y. H. H., Kronzucker, J. and Xiong. L. M. 2013. GSA-1/ARG1 protects root gravitropism in Arabidopsis under ammonium stress. New Phytolo., 97–111.






Original Research Papers

How to Cite

Challam, C., Dutt, S., Sharma, J., Raveendran, M., & Sudhakar, D. (2021). Morpho-physiological parameters associated with chlorosis resistance to iron deficiency and their effect on yield and related attributes in potato (Solanum tuberosum L.). Journal of Horticultural Sciences, 16(1), 45-52.

Similar Articles

1-10 of 386

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)