Prediction of number of generations of serpentine leaf miner, Liriomyza trifolii (Burgess) (Agromyzidae: Diptera) in India assessed by CLIMEX under climate change scenario
DOI:
https://doi.org/10.24154/jhs.v19i2.2879Keywords:
Liriomyza trifolii, Climate change, RCP 8.5, CLIMEX, IndiaAbstract
The serpentine leaf miner, Liriomyza trifolii, is an invasive pest that affects plants, causing damage to the leaves and reducing crop yield. Number of generations of serpentine leaf miner was assessed under current and expected future climate change scenarios. The assessment was done for Representative Concentration Pathway (RCP 8.5) future climate change scenario in India. L. trifolii would have had 16-19 generations, in base line and 17-24 in 2050-time frame under future climate change in Andhra Pradesh conditions. Under Arunachal Pradesh conditions, it would have had 6-14 generations in base line and is expected to complete the same number of generations in 2050, scenario. Under Sikkim conditions 3 - 4 and 5 number of generations were assessed for present and future climate change scenario. Suitability of the localities was expressed in terms of Ecoclimatic index (EI) ranging from 0 to > 20 by combining the interaction effect of various stress indices and growth indices for the development of L. trifolii. It was observed that in temperate areas the pest incidence may increase in future, in contrast to the decreasing trend in areas where already the prevailing temperatures are near upper thresholds. It is therefore expected that number of generations of L. trifolii would increase with the rising temperatures under climate change situations.
References
Abolmaaty, S. M., Hassanein, M. K., Khalil, A. A., & Abou-Hadid, A. F. (2010). Impact of climatic changes in Egypt on degree day’s units and generation number for tomato leaf miner moth Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae). Nature and Science, 8(11), 122-
Andersen, A. & Hofsvang, T. (2010). Pest risk assessment of the American serpentine leaf miner, Liriomyza trifolii in Norway. Opinion of
the panel on plant health of the Norwegian scientific committee for food safety, 09/904-5 final, ISBN 978-82-8082-401-1 (Electronic
edition). pp 35.VKM, Oslo, Norway
Anonymous (1991). Castor: Annual report. Directorate of oilseeds research, Hyderabad. p.137
Arbab, A., & Mcneill, M. R. (2011). Determining suitability of thermal development models to estimate temperature parameters for embryonic development of Sitona lepidus Gyll. (Coleoptera: Curculionidae). Journal of Pest Science, 84, 303-311. https://doi.org/10.1007/s10340-011-0360-7
Chakraborty, K. (2011). Incidence and abundance of tomato leaf miner, Liriomyza trifolii Burgess in relation to the climatic conditions of Alipurduar, Jalpaiguri, West Bengal, India. Asian Journal of Experimental Biological Sciences, 2(3), 467-473. https://api.semanticscholar.org/CorpusID:85771465
Durairaj, C. (2007). Influence of abiotic factors on the incidence of serpentine leaf miner, Liriomyza trifolii. Indian Journal of Plant Protection, 35(2), 232-234.
Fettig, C. J., Dalusky, J. M., & Berisford, W. C. 2004. Controlling nantucket pine tip moth infestations in the Southeastern U.S. www.forestpests.org version 2.0, XHTML 1.1, CSS, 508
Herms, D.A. (2004). Using degree-days and plant phenology to predict pest activity, p. 59-59. In Krischik V., Davidson J. (eds) IPM of Midwest landscapes. St Paul, University of Minnesota, 316 p.
IPCC (2023). Summary for policymakers. In: Climate Change 2023: Synthesis report. Contribution of working groups I, II and III to the sixth assessment report of the intergovernmental panel on climate change [Core Writing Team, H. Lee and J. Romero (eds.)]. IPCC, Geneva, Switzerland, pp. 1-34. http://doi.org/10.59327/IPCC/AR6-9789291691647.001
Kaur, S., Kaur, S., Srinivasan, R., Cheema, D. S., Lal, T., Ghai, T. R., & Chadha, M. L. (2010). Monitoring of major pests on cucumber, sweet
pepper and tomato under net-house conditions in Punjab, India. Pest Management in Horticultural Ecosystems, 16(2), 148-155.
Kriticos, D. J., Maywald, G. F., Yonow, T., Zurcher, E. J., Herrmann, N. I., & Sutherst, R. (2015). Exploring the effects of climate on plants,
animals and diseases. Climex version, 4, 184.
Kriticos, D. J., Webber, B. L., Leriche, A., Ota, N., Macadam, I., Bathols, J., & Scott, J. K. (2012). CliMond: global high resolution historical and future scenario climate surfaces for bioclimatic modelling. Methods in Ecology and Evolution, 3(1), 53-64. https://doi.org/10.1111/
j.2041-210X.2011.00134.x
Lanzoni, A., Bazzocchi, G. G., Burgio, G., & Fiacconi, M. R. (2002). Comparative life history of Liriomyza trifolii and Liriomyza huidobrensis
(Diptera: Agromyzidae) on beans: effect of temperature on development. Environmental Entomology, 31(5), 797-803. https://doi.org/
1603/0046-225X-31.5.797
Leibee, G. L. (1984). Influence of temperature on development and fecundity of Liriomyza trifolii (Burgess)(Diptera: Agromyzidae) on
celery. Environmental entomology, 13(2), 497-501. https://doi.org/10.1093/ee/13.2.497
Miller, G. W., & Isger, M. B. (1985). Effects of temperature on the development of Liriomyza trifolii (Burgess)(Diptera: Agromyzidae).
Bulletin of entomological research, 75(2), 321-328. https://doi.org/10.1017/S0007485300014413
Minkenberg, O. P. (1988). Life history of the agromyzid fly Liriomyza trifolii on tomato at different temperatures. Entomologia
experimentalis et applicata, 48(1), 73-84. h t t p s : / / d o i . o r g / 1 0 . 1 1 1 1 / j . 1 5 7 0 -7458.1988.tb02301.x
Nietschke, B. S., Magarey, R. D., Borchert, D. M., Calvin, D. D., & Jones, E. (2007). A developmental database to support insect phenology models. Crop Protection, 26(9), 1444-1448. https://doi.org/10.1016/j.cropro.2006.12.006
Parella, M. P. (1987). Biology of Liriomyza. Annual Rereview of Entomology, 32, 201-224.
Rao, S. M., Rama Rao, C. A., Vennila, S., Raju, B. M. K., Srinivas, K., Padmaja, P. C. M. Rao, A.V.M.S., Maheswari, M., Rao, V.U.M.&
Venkateswarlu, B. (2012). Meta-analysis of impact of elevated CO2 on host–insect herbivore interactions. Research Bulletin, 2, 48.
Roltsch, W. J., Zalom, F. G., Strawn, A. J., Strand, J. F., & Pitcairn, M. J. (1999). Evaluation of several degree-day estimation methods in
California climates. International Journal of Biometeorology, 42, 169-176. https://doi.org/10.1007/s004840050101
Sakamaki, Y., Chi Yu Cheng, C. Y., & Kushigemachi, K. (2003). Lower threshold temperature and total effective temperature for the development of Liriomyza sativae Blanchard on kidney beans. Bulletin of the Faculty of Agriculture, Kagoshima University, 53, 21-28.
Schmaedick, M., & Nyrop, J. (1993). Sampling second generation spotted tentiform leaf miner: a means to reduce overall control costs and facilitate biological control of mites in apple orchards. NY. Food Life Science Bulletin, 143, ISSN 0362-0069.
Sharpe, P. J., & DeMichele, D. W. (1977). Reaction kinetics of poikilotherm development. Journal of theoretical biology, 64(4), 649-670. https://doi.org/10.1016/0022-5193 (77)90265-X
Shi, P., & Ge, F. (2010). A comparison of different thermal performance functions describing temperature-dependent development rates. Journal of Thermal Biology, 35(5), 225-231. https://doi.org/10.1016/j.jtherbio.2010.05. 005
Singh, R. K., Nath, P., & Singh, P. K. (2005). Effect of sowing time of bottle gourd on the population of serpentine leaf miner, Liriomyza trifolii Burgess. Journal of Experimental Zoology, 8, 145-149.
Stange, E. E., & Ayres, M. P. (2010). Climate change impacts: Insects. Encyclopedia of life sciences, 1. http://doi.org/10.1002/97804700
a0022555
Sutherst, R. W., Maywald, G. F., & Kriticos, D. J. (2007). CLIMEX version 3: user’s guide. Hearne Scientific Software Pty Ltd., Melbourne, Australia. pp. 1–131.
Tokumaru, S. and Abe, Y. (2003). Effects of temperature and photoperiod on development and total reproductive potential of Liriomyza
sativae, L. trifolii, and L. bryoniae (Diptera: Agromyzidae). Japanese Journal of Applied Entomology and Zoology, 47, 143-152.
Vercambre, B., & Thiery, A. (1983). Données bio- écologiques sur Liriomyza trifolii Burgess (Dipt., Agromyzidae) et de son principal
parasite Hemiptarsenus semialbiclava Girault (Hym., Eulophidae). Ninth African Symposium on Horticultural Crops, Mahe, Seychelles, 27-29/7/83 http://agritrop.cirad.fr/446051
Zhang, Z., Cazelles, B., Tian, H., Christian Stige, L., Bräuning, A., & Stenseth, N. C. (2009). Periodic temperature-associated drought/flood
drives locust plagues in China. Proceedings of the Royal Society B: Biological Sciences, 276(1658), 823-831. https://doi.org/10.1098/
rspb.2008.1284
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Anusha N., Balasubramani V., Sridhar V., Murugan M., Johnson Thangaraj Edward Y.S., Satyamoorthy N.K., Kavitha M. (Author)
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Authors retain copyright. Articles published are made available as open access articles, distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original author and source are credited.
This journal permits and encourages authors to share their submitted versions (preprints), accepted versions (postprints) and/or published versions (publisher versions) freely under the CC BY-NC-SA 4.0 license while providing bibliographic details that credit, if applicable.