Mining of miRNAs using Next Generation Sequencing (NGS) data generated for Okra (Abelmoschus esculentus)

Authors

  • Rekha Gupta Author
  • M Gayathri Author
  • V Radhika Author
  • M Pichaimuthu Author
  • K V Ravishankar Author

DOI:

https://doi.org/10.24154/jhs.v13i2.474

Keywords:

microRNA, Next Generation Sequencing, Abelmoschus esculentus, miRNA targets

Abstract

MicroRNAs (miRNAs) are small, highly conserved non-coding RNA molecules involved in the
regulation of gene expression in eukaryotes. Gene expression involves post-transcriptional
gene regulation by miRNAs. miRNAs are formed from precursor RNA molecules that fold into
a stem loop secondary structure. The mature miRNA is one end of the precursor miRNA,
defined by the cut from ‘Drosha’ on either the 5’ or 3’ arm. In this study, we have used a
bioinformatics approach to identify miRNAs in 3,361 contigs obtained from partial genome
sequence data of Abelmoschus esculentus (okra) sequenced by NGS technology. Using C-mii
and psRNA Target tools, we identified two miRNAs and their target RNAs for which a regulatory
miRNA binding has been verified. Their targets consisted of transcription factors involved in
growth and development, gene regulation and metabolism. Phylogenetic analysis of the newly
identified miRNA family has been done to compare their level of conservation with respect to
the other members of the plant kingdom.

References

Ambros, V., Bartel, B., Bartel, D.P., Burge, C.B., Carrinqton, J.C., Chen, X., Drevfuss, G., Eddy, S.R., Griffith-Jones, S., Marshall, M., Matzke, M., Ruvkun, G. and Tuschl, T. 2003. A uniform system for microRNA annotation. RNA, 9: 277-27

Amin, I.M. 2011. Hypoglyclemic Effects in Response to Abelmoshus Esculentus Treatment: A Research Framework using STZ-Induced Diabetic Rats. Int. J. of Biosci. Biochem. Bioinforma., 1: 63-67

Bartel, D.P. 2004. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell, 116: 281-297

Bartel, D.P., 2009. MicroRNAs: target recognition and regulatory functions. Cell, 136: 215-233.

Bonnet, E., He, Y., Billiau, K. and Van de Peer, Y. 2010. TAPIR, a web server for the prediction of plant microRNA targets, including target mimics.Bioinforma, 26: 1566-1568

Brown, J.R. and Sanseau, P. 2005. A computational view of microRNAs and their targets. Drug Discov, 10: 595–601

Chakraborty, S., Mehtab, S., Patwardhan, A. and Krishnan, Y. 2012. Pri-miR-17-92a transcript folds into a tertiary structure and autoregulates its processing. RNA, 18: 1014-1028

Dai, X. and Zhao, P. X. 2011. psRNATarget: a plant small RNA target analysis server. Nucleic Acids Res, 39: W155-W159

Dezulian,T., Remmert, M., Palatnik, J.F., Weigel,D. and Huson,D.H. 2006. Identification of plant microRNA homologs. Bioinforma, 22: 359–360

Doench, J.G. and Sharp, P.A., 2004. Specificity o f m i c r o R N A t a r g e t selection in translational repression. Genes Dev, 18: 504- 511

Griffiths-Jones S., Saini, H.K., van Dongen, S. and Enright, A.J. 2008. miRBase: tools for microRNA genomics. Nucl Acids Res, 36: D154-158

Griffiths-Jones S., Grocock, R.J., van Dongen, S., Bateman, A. and Enright, A.J. 2006. miR Base: microRNA sequences, targets and gene nomenclature. Nucleic Acids Res.34: D140–D144

Griffiths-Jones, S. 2004. The microRNA Registry. Nucleic. Acids. Res.32: D109–D111

Huang, X. and Madan,A. 1999. CAP3: A DNA Sequence Assembly Program. Genome Res, 9: 868-877

Jia, Q., Lin, K., Liang, J., Yu, L. and Li, F. 2010. Discovering conserved insect microRNAs from expressed sequence tags. J. Insect Physiol.12:1763-1769

Kiezun, A., Artzi, S., Modai, S., Volk, N., Isakov, O. and Shomron, N. 2012. miRviewer: a multi species microRNA homologous viewer. BMC. Res. Notes. 10.1186/1756-0500-5-92

Krek, A., Grün, D., Poy, M.N., Wolf, R., Rosenberg, L., Epstein, E.J., MacMenamin, P., da Piedade, I., Gunsalus, K.C., Stoffel, M. and Rajewsky, N. 2005. Combinatorial microRNA target predictions. Nature. Genet. 5: 495-500

Lau, N.C., Lim, L.P., Weinstein, E.G.and Bartel, D.P. 2001. An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans. Sci. 294: 858-862

Lee, R.C. and Ambros, V. 2001. An extensive class of small RNAs in Caenorhabditis elegans.Science. 294: 862-864

Lee, R.C., Feinbaum, R.L. and Ambros, V. 1993. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell.75: 843–854

Lee, Y., Jeon, K., Lee, J.T., Kim, S. and Kim, V.N. 2002. MicroRNA maturation: stepwise processing and subcellular localization. EMBO. J.21: 4663-4670

Lee, Y., Kim, M., Han, J., Yeom, K.H., Lee, S., Baek, S.H. and Kim, V.N. 2004. MicroRNA genes are transcribed by RNA polymerase II. EMBO J.23: 4051-4060

Lewis, B.P., Burge, C.B. and Bartel, D.P. 2005. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell.1: 15-20

Li,Y., Li,W. and Jin, Y. X. 2005. Computational identification of novel family members of microRNA genes in Arabidopsis thaliana and Oryza sativa. Acta Biochim. Biophys. Sin. 37: 75–87

Lim, L.P., Lau, N.C., Garrett-Engele, P., Grimson, A., Schelter, J.M., Castle, J., Bartel, D.P., Linsley, P.S. and Johnson, J.M. 2005. Microarray analysis shows that some microRNAs down regulate large numbers of target mRNAs. Nature. 7027: 769-773

Lu, Y. and Yang X. 2010.Computational Identification of Novel MicroRNAs and Their Targets in Vigna unguiculata. Comptu.Funct. Genomics.10.1155/2010/128297

Mandhan, V., Kaur, J. and Singh K. 2012. smRNAome profiling to identify conserved and novel microRNAs in Stevia rebaudiana Bertoni. BMC. Plant. Biol.12: 1471-2229

Mendes, N.D., Freitas, A.T. and Sagot, M.F. 2009. Current tools for the identification of miRNA genes and their targets. Nucleic. Acids. Res. 37: 2419-2433

Nabajit, D. 2012. MicroRNA Targets - How to predict?.Bioinformatics. 8: 841-845

Numnark, S., Mhuantong, W., Ingsriswang, S. and Wichadakul, D. 2012. C-mii: a tool for plant miRNA and target Identification. BMC Genomics. 13: 1471-2164

Patanun, O., Lertpanyasampatha, M., Sojikul, P., Viboonjun, U., &Narangajavana, J. (2013). Computational identification of microRNAs and their targets in cassava (Manihot esculenta Crantz.). Molecular biotechnology. 53(3):257-269.

Perez-Quintero, A.L., Neme, R., Zapata, A. and Lopez, C. 2010. Plant microRNAs and their role in defense against viruses: a bioinformatics approach. BMC Plant Biol.10: 1471-2229

Qiu, C.X., Xie, F.L.,Zhu, Y.Y., Guo, K., Huang, S.Q., Nie, L. and Yang, Z.M. 2007. Computational identification of microRNAs and their targets in Gossypium hirustum expressed sequence tags. Gene.395: 49-61

Suo, J., Liang, X., Pu, L., Zhang, Y. and Xue, Y. 2003. Identification of GhMYB109 encoding a R2R3 MYB transcription factor that expressed specifically in fiber initials and elongating fibers of cotton (Gossypium hirsutum L.). Biochem.Biophys. Acta.1630: 25-34

Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M. and Kumar, S. 2011. MEGA5: Molecular Evolutionary Genetics Analysis Using Maximum Likelihood, Evolutionary Distance, and Maximum Parsimony Methods.Mol. Biol. Evol. 28: 2731–2739

Ying, S.Y. and Lin, S.L. 2005. Intronic microRNAs. Biophys. Res. Commun. 326: 515-520

Zhang, B., Wang, Q. and Pan, X. 2007. MicroRNAs and Their Regulatory Roles in Animals and Plants. J. Cell. Physiol. 210:279–289

Zhang, B., Pan, X., Cannon, C.H., Cobb, G.P. and Anderson, T.A. 2006c. Conservation and divergence of plant microRNA genes. Plant. J. 2: 243-259

Downloads

Published

31-12-2018

Issue

Section

Research Papers

How to Cite

Gupta, R., Gayathri, M., Radhika, V., Pichaimuthu, M., & Ravishankar, K. V. (2018). Mining of miRNAs using Next Generation Sequencing (NGS) data generated for Okra (Abelmoschus esculentus). Journal of Horticultural Sciences, 13(2), 137-145. https://doi.org/10.24154/jhs.v13i2.474

Similar Articles

1-10 of 42

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)

<< < 1 2