Aroma Profile of Fruit Juice and Wine Prepared from Cavendish Banana (Musa Sp., Group AAA) Cv. Robusta

Authors

  • K Ranjitha Author
  • C K Narayana Author
  • T K Roy Author

DOI:

https://doi.org/10.24154/jhs.v8i2.305

Keywords:

Banana Wine, Head-Space Volatiles, Esters, Fermentation-Derived Aroma, SPME Method

Abstract

A comparative study of the aroma profile of an alcoholic beverage (wine) and natural juice from banana cv. Robusta was performed. The study showed disappearance and synthesis of many aroma compounds during the fermentation process. Relative abundance of carbonyl compounds was high in the juice, and carboxylic acid content was higher in the wine. Aroma signature compounds of banana juice, isoamyl acetate, butyl isovalerate, isopentyl isovalerate, trans- 2- hexenal and butanoates were present only in a low proportion in the wine, while decanoic, dodecanoic and hexa decanoic acids (as well as their esters) were abundant in the banana wine. Synthesis compounds like methyl nonyl ketone, isoeuginol and 2-methoxy 4-vinyl phenol was greater during fermentation. Elemicin was present in high quantity in both the juice and the wine.

Downloads

Download data is not yet available.

References

Akubor, P.I., Obio, K.S.O., Nwadomere, A. and Obiomah, E. 2003. Production and evaluation of banana wine. Pl. Food & Human Nutr., 58:1-6

Amerine, M.A. and Ough, C.S. 1982. Methods for Analysis of Musts and Wine. John Wiley and Sons, New York, p. 250

Aurore, G., Parfait, B. and Fahrasmine, L. 2009. Bananas, raw materials for making processed food product. Trends in Food Sci. Technol., 20:78-91

Carvalho, G.B.M., Silva, D.P., Bento, C.V., Vicente, A.A., Teixeira, J.A. and Felipe, M.G.A. 2009. Banana as adjunct in beer production: Applicability and performance of fermentative parameters. Appl. Biochem. Biotechnol., 155:356–365

Comuzzo, P., Tat, L., Tonizzo, A. and Battistutta, F. 2006. Yeast derivatives (extracts and autolysates) in winemaking: Release of volatile compounds and effects on wine aroma volatility. Food Chem., 99:217–230

Iwuoha, C.I. and Eke, S.O. 1996. Nigerian indigenous fermented foods: Their traditional process operation, inherent problems, improvements and current status. Food Res. Int’l., 29:527-540

Kotseridis, Y. and Baumes, R. 2000. Identification of impact odorants in Bordeaux red grape juice, in the commercial yeast used for its fermentation, and in the produced wine. J. Agri. Food Chem., 48:400-406

Kovats, E. 1965. Gas chromatographic characterization of organic substances in the retention index system. Adv. Chromat., 1:229-247

Lilly, M., Bauer, F.F., Marius, G., Lambrechts, M.G., Swiegers, J.H., Cozzolino, D. and Pretorius, I.S. 2006. The effect of increased yeast alcohol acetyltransferase and esterase activity on the flavour profiles of wine and distillates. Yeast, 23:641-659

Macku, C. and Jennings, W.G. 1987. Production of volatiles by ripening bananas. J. Agri. Food Chem., 35:845-848

Marriott, J. 1980. Bananas: physiology and biochemistry of storage and ripening for optimum quality. CRC Crit. Rev. Food Sci. Nutr., 13:41- 88

Mateo, J., Jimenez, M., Herta, T. and Pastor, A. 1992. Comparison of volatiles produced by four Saccharomyces cerevisiae strains isolated from Monastrell musts. Amer. J. Enol. Vitic., 43:206–209

Mattei, A. 1973. Analyse de l’e´mission volatile de la banane (cultivar ‘‘Poyo’’ Groupe Cavendish). Fruits, 28:231-239

Nogueira, J.M.F., Fernandes, P.J.P. and Nascimento, A.M.D. 2003. Composition of volatiles of banana cultivars from Madeira Island. Phytochem. Anal., 14:87-90

Pawliszyn, J. 1997. Solid Phase Microextraction: Theory and Practice. Wiley-VCH, New York, p. 264

Perez, A.G., Cert, A., Rios, J.J. and Olias, J.M. 1997. Free and glycosidically bound volatile compounds from two bananas cultivars: Valery and Pequen˜a Enna. J. Agri. Food. Chem., 45:4393-4397

Rapp, A. 1998. Volatile flavour of wine: Correlation between instrumental analysis and sensory perception. Mol. Nutr. Food Res., 42:351–363

Rapp, A. and Mandery, H. 1986. Wine aroma. Experientia, 42:873–884

Ribereau-Gayon, P., Glories, Y., Maugean, A. and Duborudieu, D. 2006. Handbook of Enology, Vol. 2: The Chemistry of Wine Stabilization and Treatments. Wiley, New York, p. 404

Shiota, H. 1991. New esteric components in the volatiles of banana fruit (Musa sapientum L.). J. Agri. Food Chem., 41:2056–2062

Torija, M.S., Beltran, G., Novo, M., Poblet, M., Guillamo´n, J.M. Mas, A. and Roze’s, N. 2003. Effects of fermentation temperature and Saccharomyces species on the cell fatty acid composition and presence of volatile compounds in wine. Int’l. J. Food Microbiol., 85:127–136

Vermeir, S.M.L.A.M., Hertog, K., Vankerschaver, R., Swennen, B.M., Nicolai, J. and Lammertyn. 2009. Instrumental based flavour characterisation of banana fruit. Food Sci. Technol., 42:1647–1653

Wang, J., Li, Y.Z., Chen, R.R., Bao, J.Y. and Yang. V. 2007. Comparison of volatiles of banana powder dehydrated by vacuum belt drying, freeze-drying and air-drying. Food Chem., 104:1516-1521

Downloads

Published

31-12-2013

Issue

Section

Original Research Papers

How to Cite

Ranjitha, K., Narayana, C. K., & Roy, T. K. (2013). Aroma Profile of Fruit Juice and Wine Prepared from Cavendish Banana (Musa Sp., Group AAA) Cv. Robusta. Journal of Horticultural Sciences, 8(2), 217-223. https://doi.org/10.24154/jhs.v8i2.305

Similar Articles

1-10 of 108

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)

1 2 > >>