Studies on the effect of induced polyploidy on yield and phytochemical content in Centella asiatica (L.) Urban

Authors

  • Rohini M R ICAR-Indian Institute of Horticultural Research, Bengaluru - 560 089, India Author
  • Rao V K ICAR-Indian Institute of Horticultural Research, Bengaluru - 560 089, India Author
  • Rajendiran S ICAR-Indian Institute of Horticultural Research, Bengaluru - 560 089, India Author

DOI:

https://doi.org/10.24154/jhs.v19i2.2469

Keywords:

Arka Prabhavi, Centella asiatica, colchicine, tetraploidy, triterpenoid

Abstract

Centella asiatica (L.) Urban, family Apiaceae, is a high value medicinal herb cum neutraceutical vegetable. The present investigation has successfully induced tetraploidy in the diploid Centella asiatica variety Arka Prabhavi thereby improving its biomass yield and secondary metabolite yield per unit area. The tetraploid was obtained by treating the shoot tips of diploid genotype (Arka Prabhavi) using 0.05% colchicine via cotton plug method. Tetraploid plants regenerated after six months showed significant changes in morphological traits like stolon length, intermodal length, leaf length, leaf width, petiole length and biomass yield. Tetraploidy was further confirmed with the cytological analysis showing doubling of the number of chromosomes and from the increased stomatal size, decreased stomatal density and increased size of pollen grains. Tetraploid and diploid genotypes were found to be on par for the asiaticoside content (2.37% and 2.30%, respectively) but since the biomass yield was increased (67%), the tetraploid reported 71.7% increase (91.09 kg/ha) in asiaticoside yield over the diploid Arka Prabhavi (53.05 kg/ha). Increase in asiaticoside yield will be beneficial for the pharmaceutical companies and herbal extractors who are interested in higher yield of metabolites in the extract. Analysis of the micronutrient (vitamin and minerals) content in the diploid and teraploid genotype showed significant increase in the tetraploid over the diploid genotype inferring that polyploidization has improved the nutrient levels also making it a promising green leafy vegetable.

Author Biographies

  • Rohini M R, ICAR-Indian Institute of Horticultural Research, Bengaluru - 560 089, India

    Division of Flower and Medicinal Crops, ICAR-Indian Institute of Horticultural Research, Bengaluru - 560 089, India

  • Rao V K, ICAR-Indian Institute of Horticultural Research, Bengaluru - 560 089, India

    Division of Basic Sciences, ICAR-Indian Institute of Horticultural Research, Bengaluru - 560 089, India

  • Rajendiran S, ICAR-Indian Institute of Horticultural Research, Bengaluru - 560 089, India

    Division of Natural Resources, ICAR-Indian Institute of Horticultural Research, Bengaluru - 560 089, India

References

Berkov S., & Philipov, S. (2002). Alkaloid production in diploid and autotetraploid plants of Datura stramonium. Pharma Biological, 40, 617–621. https://doi.org/10.1076/phbi.40.8.617.14650

Blakeslee, A. F. (1941). Effect of induced polyploidy in plants. The American Naturalist, 75(757), 117-135.

De Jesus-Gonzalez, L., & Weathers, P. J. (2003). Tetraploid Artemisia annua hairy roots produce more artemisinin than diploids. Plant Cell

Reporter, 21, 809–813. https://doi.org/10.1007/s00299-003-0587-8

Doyle, J., & Coate, J. (2019). Polyploidy, the nucleotype, and novelty: The impact of genome doubling on the biology of the cell.

International Journal of Plant Science, 180, 1–52. https://doi.org/10.1086/700636

Eeckhaut, T. G., Werbrouck, S. P., Leus, L. W., Van Bockstaele, E. J., & Debergh, P. C. (2004). Chemically induced polyploidization in

Spathiphyllum wallisii Regel through somatic embryogenesis. Plant Cell, Tissue Organ Culture, 78(3), 241-246. http://dx.doi.org/10.1023/B:TICU.0000025659.19232.04

Farooqi, A. A., & Sreeramu, B. S. (2004). Cultivation of medicinal and aromatic crops. University of Agricultural Sciences Press, Bangalore, India.

Gao, S. L., Chen, B. J., & Zhu, D. N. (2002). In vitro production and identification of autotetraploids of Scutellaria baicalensis. Plant Cell, Tissue Organ Culture, 70(3), 289-293. https://doi.org/10.1023/A:1016577002039

Gopinath. (2021). grapesAgri1: Collection of shiny apps for data analysis in agriculture. J. Open Source Softwarem, 6(63), 3437, https://doi.org/10.21105/joss.03437

Hamill, S. D., Smith, M. K., & Dodd, W. A. (1992). In vitro induction of banana autotetraploids by colchicine treatment of micropropagated

diploids. Australian Journal of Botany, 40(6), 887-896. https://doi.org/10.1071/BT9920887

Kaensaksiri, T., Soontornchainaksaeng, P., Soonthornchareonnon, N., & Prathanturarug, S. (2011). In vitro induction of polyploidy in

Centella asiatica (L.) Urban. Plant Cell, Tissue Organ Culture, 107(2),187-194. https://doi.org/10.1007/s11240-011-9969-8

Kara, Z. (2022). Induction of polyploidy in grapevine (Vitis vinifera L.) seedlings by in vivo colchicines applications. Turkish Journal of

Agriculture and Forestry, 46(2), 152-159. https://doi:10.55730/1300-011X.2967

Kjeldahl, J. (1883) A new method for the determination of nitrogen in organic matter. Zeitschrift für Analytische Chemie, 22, 366-382. http://dx.doi.org/10.1007/BF01338151

Liu, G., Li, Z., & Bao, M. (2007). Colchicine-induced chromosome doubling in Platanus acerifolia and its effect on plant morphology.

Euphytica,157(1), 145-154. http://dx.doi.org/10.1007/s10681-007-9406-6

Liu, X. Z., Lin, H., Mo, X. Y., Long, T., & Zhang, H. Y. (2009). Genetic variation in colchicine-treated regenerated plants of Eucalyptus

globulus Labill. Journal of Genetics, 88(3), 345. https://doi.org/10.1007/s12041-009-0051-9

Madani, H., Escrich, A., Hosseini, B., Sanchez-Muñoz, R., Khojasteh, A., & Palazon, J. (2021). Effect of polyploidy induction on natural metabolite production in medicinal plants. Biomolecules, 11(6), 899. https://doi.org/10.3390%2Fbiom11060899

Srivastava, R. (2002). Autopolyploids of Helianthus annuus L. var. morden. Cytologia 67(2), 213-220. http://dx.doi.org/10.1508/cytologia.67.213

Mishra, B. K., Pathak, S., Sharma, A., Trivedi, P. K., & Shukla, S. (2010). Modulated gene expression in newly synthesized auto-tetraploid

of Papaver somniferum L. South African Journalof Botany 76(3), 447-452. https://doi.org/10.1016/j.sajb.2010.02.090

Omid, B. R., Mirzaei, M., Hasani, M. E., & Sedighi, M. M. (2010). Induction and identification of polyploidy in basil (Ocimum basilicum L.)

medicinal plant by colchicine treatment. International Journal of Plant Production,4(2), 87-98. https://doi.org/10.22069/

ijpp.2012.686

Rao, B., & Deshpande, V. (2006): Experimental biochemistry. Tunbridge Wells, Kent: Anshan.

Rohini, M. R., & Smitha, G. R. (2022). Studying the effect of morphotype and harvest season on yield and quality of Indian genotypes of

Centella asiatica: A potential medicinal herb cum underutilized green leafy vegetable. South African Journal of Botany, 145, 275-283.

https://doi.org/10.1016/j.sajb.2021.11.024

Rodier-Goud, M., Rivallan, R., Lussert, A., Danthu, P., de Lamotte, F., Ralambofetra, E., Baurens, F. C. (2013). Insight into the biology, genetics and evolution of the Centella asiatica polyploid complex in Madagascar. Industrial Crops and Products, 47, 118-125. https://doi.org/10.1016/j.indcrop.2013.02.022

Trojak-Goluch, A., & Skomra, U. (2013). Artificially induced polyploidization in Humulus lupulus L. and its effect on morphological and chemical traits. Breeding Science, 63(4), 393-399. https://doi.org/10.1270%2Fjsbbs.63.393

Williams, J. H., & Oliveira, P. E. (2020). For things to stay the same, things must change: polyploidy and pollen tube growth rates. Annals of Botany, 125(6), 925-935. https://doi.org/10.1093/aob/mcaa007

Downloads

Published

30-12-2024

How to Cite

MR, R., V K, R., & S, R. (2024). Studies on the effect of induced polyploidy on yield and phytochemical content in Centella asiatica (L.) Urban. Journal of Horticultural Sciences, 19(2). https://doi.org/10.24154/jhs.v19i2.2469

Similar Articles

11-20 of 74

You may also start an advanced similarity search for this article.