Determination of mutagenic sensitivity and its manifestations on papaya (Carica papaya L.) cv. Arka Prabhath
DOI:
https://doi.org/10.24154/jhs.v18i1.2143Keywords:
Arka Prabhath, gamma rays, lethal dose, mutation, papayaAbstract
Papaya is an important fruit crop of the family Caricaceae which needs the improvement in terms of virus resistance and shelf life with dwarf stature. Mutation breeding technique has been considered as an efficient tool adopted by plant breeders to create variability in papaya. The mutation frequency and population structure of the mutants directly depend upon the type of mutagen and the time of exposure. Irrespective of the used mutagens, the ultimate induced mutations are random and therefore determination of mutagenic sensitivity is important pre-requisite. Based on this, investigation on the induction of mutation in papaya cv. Arka Prabhath was carried out with the objective of creating genetic variability through physical mutagen. In this study, papaya seeds were irradiated with five different dose of gamma rays ranging from 50 Gy to 500 Gy. The results revealed that gradual reduction in germination, survival of seedlings and delayed germination with increase in dosage of gamma rays. Based on probit analysis, LD50 (Lethal dose) was fixed at 186.24 Gy. Total seven types of chlorophyll mutants were observed as a result of mutation. Mutagenic efficiency and effectiveness were higher in a lower dose of gamma treatment (50 Gy).
References
Addinsoft. 2021. XLSTAT statistical and data analysis solution. New York, USA. https:// www.xlstat.com.
Aiswarya, R., Aneesa Rani, M. S., Auxcilia, J., Thiruvengadam and Karthikeyan, G. 2022. Mutagenic effectiveness, efficiency and dose optimization of gamma rays in papaya (Carica papaya L.) varieties. Electron. J. Plant Breed., 13(4): 1270-1281. DOI: https://doi.org/10.37992/2022.1304.158
Alvarez-Holguin, A., Morales-Nieto, C. R., Avendaio- Arrazate, C. H., Corrales-Lerma, R., Villarreal-Guerrero, F., Santellano-Estrada, E. and Gomez- Simuta, Y. 2019. Mean lethal dose (LD50) and growth reduction (GR50) due to gamma radiation in Wilman lovegrass (Eragrostis superba). Rev. mex. Cienc., 10(1): 227-238. DOI: https://doi.org/10.22319/rmcp.v10i1.4327
Ananthaswamy, H.N., Vakil, U.K. and Sreenivasan, A. 1971. Biochemical and physiological changes in gamma-irradiated wheat during germination. Radiat. Bot., 11: 1-12. DOI: https://doi.org/10.1016/S0033-7560(71)91257-9
Arumuganathan, K., Earle, E. D. 1991. Nuclear DNA content of some important plant species. Plant Mol. Biol. Rep., 9: 208-218. DOI: https://doi.org/10.1007/BF02672069
Blixt. S, O. Gelin, R. Mossberg, G. Ahnstrom, L. Ehrenberg and Lofgren, R. 1964. Studies of induced mutations in peas. IX. Induction of leaf spots in peas. Agr. Hort. Genet., 22.
Blixt, S., 1972. Mutation in Pisum. Agric. and Hortic. Genet., 30: 1–293
Dwivedi, K., Kumar, K. and Kumar, G. 2021. Outcome of UV-B exposure and induction of some chlorophyll phenodeviants in two important hepatoprotective ethnomedicinal wild plants. Vegetos, 34(3): 700- 708. DOI: https://doi.org/10.1007/s42535-021-00214-0
Finney, D.J., 1978. Statistical Method in Biological Assay. Charles Griffin Co.
Goyal, S., Wani, M.R. and Khan, S. 2019. Frequency and spectrum of chlorophyll mutations induced by single and combination treatments of gamma rays and EMS in urdbean. Asian J. Biol. Sci., 12(2): 156- 163. DOI: https://doi.org/10.3923/ajbs.2019.156.163
Gustafsson, A. 1940. The mutation system of the chlorophyll apparatus. Lunds. Univ. Arrskr. N.F. Adv., 36: 1-40.
Gustafsson, A. 1951. Induction of changes in genes and chromosome. II. Mutations, environment and evolution. Cold Spring Harb. Symp. Quant., 4: 601-632.
Hang, N. T. N. and Chau, N. M. 2008. Radiation induced mutation for improving papaya variety in Vientnam. Acta Hortic,, 851: 77-80.
Hong, M. J., Kim, D. Y., Jo, Y. D., Choi, H. I., Ahn, J. W., Kwon, S. J. and Kim, J. B. 2022. Biological effect of gamma rays according to exposure time on germination and plant growth in wheat. App. Sci., 12(6): 3208. DOI: https://doi.org/10.3390/app12063208
Husselman, J. H., Daneel, M. S., Sippel, A. D. and Severn- Ellis, A. A. 2014. Mutation breeding as an effective tool for papaya improvement in South Africa. In XXIX International Horticultural Congress on Horticulture: Sustaining Lives, Livelihoods and Landscapes (IHC2014). IV 1111. 71-78. DOI: https://doi.org/10.17660/ActaHortic.2016.1111.11
Kaur, S. and Rattanpal, H. S. 2010. Effect of mutagens on in vitro seed germination and growth of rough lemon (Citrus jambhiri) seedlings. Indian J. Agric. Sci., 80(9): 773.
Kim, Y., Schumaker, K.S. and Zhu, J.K. 2006. EMS mutagenesis of Arabidopsis. Meth. Mol. Biol., 323: 101-103.
Konzak, C. P., Wagner, R. A., Nilan, J. and Foster, R. J. 1965. Efficient chemical mutagenesis. Rad. Bot., 5: 49-70.
Kumar, A., Paul, S., Sood, V. K., Thakur, G. and Thakur, R. 2021. Effectiveness and efficiency of gamma rays and EMS (Ethyl methane sulphonate) in linseed (Linum usitatissimumL.). Himachal J. Agric. Res., 47(2): 163-168.
Menda, N., Semel, Y., Peled, D., Eshed, Y. and Zamir, D. 2004. In silico screening of a saturated mutation library of tomato. Plant J., 38: 861- 872. DOI: https://doi.org/10.1111/j.1365-313X.2004.02088.x
Murti, R. H., Kim, H. Y. and Yeoung, Y. R. 2013. Effectiveness of gamma ray irradiation and ethyl methane sulphonate on in vitro mutagenesis of strawberry. Afr. J. Biotechnol., 12(30): 4803-4812. DOI: https://doi.org/10.5897/AJB12.1386
Nakasone, H. Y., Paull, R. E. 1998. Tropical fruits. CAB Int., Wallingford.
Naveena, N., Subramanian, S., Jawaharlal Iyanar, K. and Chandrasekhar, C. N. 2020. Determination of mutagenic sensitivity in Hibiscus rosa- sinensis L. (Cultivar Red Single) to physical and chemical mutagens. Int. J. Curr. Microbiol. and App. Sci., 9(10):1756-1763. DOI: https://doi.org/10.20546/ijcmas.2020.910.213
Nurmansyah, Alghamdi, S.S., Migdadi, H.M. and Farooq, M. 2018. Morphological and chromosomal abnormalities in gamma radiation-induced mutagenized faba bean genotypes. Int. J. Radiat. Biol., 94: 174-185. DOI: https://doi.org/10.1080/09553002.2018.1409913
Padmadevi, K., 2009. In vivo and in vitro mutagenesis and molecular characterization in chrysanthemum (Dendranthema grandiflora Tzvelev). Ph.D. Thesis. Tamil Nadu Agricultural University.
Parveen, N., Dinesh, M. R., Sankaran, M. and Venugopalan, R. 2023. Mutagenic-sensitivity and variability in the putative mutants of polyembryonic mango genotypes. Indian J. Hortic., 80(1): 3-9. DOI: https://doi.org/10.58993/ijh/2023.80.1.1
Pujar, D. 2019. Studies on imparting papaya ring spot virus (PRSV) resistance through wide hybridization and mutation breeding for improved morphological and fruit traits in papaya (Carica papaya L.). Ph.D. (Hort.) Thesis, University of Horticultural Sciences, Bagalkot.
Rahman, H. and Akanda, M. 2008. Effect of seven symptomatic isolates of papaya ringspot virus papaya (PRSV-P) strain on the growth and yield contributing character of papaya. G. Sci., 441- 447.
Ramesh, A.N., Vageeshbabu, H. S., Manamohan, M., Rekha, A., Santosh, D. B. and Santosh, G. M. 2019. Effect of gamma radiation for improving quality in papaya (Carica papaya L.) cv. Arka Prabhath in M1 generation. Int. J. Pure and Appl. Biosci., 7(3): 515-524.
Sahu, P., Dash, D.K., Lenka, J., Dash, S.N., Tripathy, S.K., Mishra, A. and Sahu, A., 2019. Gamma radiosensitivity study on papaya cv. Ranchi local & Arka Surya. Int. J. Chem. Stud., 7(6): 146-153.
Saini, H.K. and Gill, M. I. S. 2009. Induction of mutation in Rough lemon (Citrus jambhiri Lush.) using gamma rays. J. Hortic. Sci., 4(1): 41-44. DOI: https://doi.org/10.24154/jhs.v4i1.554
Sankaran, M., Kalaivanan, D. and Gowda, S. 2021. Studies on mutagenic sensitivity of seeds of pummelo (Citrus maxima Merr.). J. Hortic. Sci., 16(1): 121-124. DOI: https://doi.org/10.24154/jhs.v16i1.1127
Seemanthini, N. S. 2022. Variability and mutation studies in Hibiscus rosa-sinensis L. Ph.D. (Hort.) Thesis. University of Horticultural Sciences Bagalkot.
Sharma, L. K., Manisha Kaushal, Gill, M. I. S. and Bali, S. K. 2013. Germination and survival of Citrus Jambhiri seeds and epicotyls after treating with different mutagens under in vitro Conditions. Middle-East J. Sci. Res., 6(2): 250- 255.
Sharma, S. K., Tripathi, S. and Mitra, S. K. 2017. Breeding for resistance against papaya ringspot virus: history, present status and future prospects in India. In: V Int. Symp. Papaya, 1250: 45-54. DOI: https://doi.org/10.17660/ActaHortic.2019.1250.8
Sharma, S. K. and Tripathi, S. 2019. Horticultural characterization and papaya ringspot virus reaction of papaya Pune Selections. Ind. J. Hortic., 76(1): 32-37. DOI: https://doi.org/10.5958/0974-0112.2019.00005.7
Sideris, E.G., Nawar, M.M. and Nilan, R.A. 1971. Effect of gamma radiation on gibberellic acid solutions and gibberellin-like substances in barley seedlings. Radiat. Bot., 11: 209-214. DOI: https://doi.org/10.1016/S0033-7560(71)90327-9
Surakshitha, N. C. and Soorianathasundaram, K. 2017. Determination of mutagenic sensitivity of hardwood cuttings of grapes Red Globe and Muscat (Vitis vinifera L.) to gamma rays. Sci. Hortic., 226: 152-156. DOI: https://doi.org/10.1016/j.scienta.2017.08.040
Yasmeen, S., Khan, M.T and Khan, I.A. 2020. Revisiting the physical mutagenesis for sugarcane improvement: a stomatal prospective. Sci. Rep., 10(1): 1-14. DOI: https://doi.org/10.1038/s41598-020-73087-z
Zou, J., Wei, Y., Jako, C., Kumar, A., Selvaraj, G. and Taylor, D.C. 1999. The Arabidopsis thaliana TAG1 mutant has a mutation in a diacylglycerol acyltransferase gene. The Plant J., 19: 645-653. DOI: https://doi.org/10.1046/j.1365-313x.1999.00555.x
Downloads
Published
Issue
Section
License
Copyright (c) 2023 Navya Bhat, M R Dinesh, H S Vageeshbabu , G C Acharya, S N Dash , S C Swain
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Authors retain copyright. Articles published are made available as open access articles, distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original author and source are credited.
This journal permits and encourages authors to share their submitted versions (preprints), accepted versions (postprints) and/or published versions (publisher versions) freely under the CC BY-NC-SA 4.0 license while providing bibliographic details that credit, if applicable.