Efficient in vitro plantlets regeneration from leaf explant of Haworthia retusa, an important ornamental succulent
DOI:
https://doi.org/10.24154/jhs.v18i1.2161Keywords:
6-benzyl amino adenine, Haworthia retusa, indole 3-butyric acid, leaf explants, micropropagation, plantlet regenerationAbstract
This study was conducted to establish an efficient in vitro plantlet regeneration protocol using the ex vitro leaves as explants for Haworthia retusa. Leaf tissues were cultured on liquid full-strength Murashige and Skoog (MS) medium supplemented with 2.0 mg/L indole 3-butyric acids (IBA) for callus induction, followed by sub-cultured to solid medium for callus proliferation. Callus was then transferred to a fresh medium supplemented with 6-benzyl amino adenine (BA) for shoot development. The result showed that the maximum rate of shoot regeneration (100%), number of shoots per explant (43), and shoot height (9.4 mm) were recorded on the solid MS medium supplemented with 1.0 mg/L BA and 30 g/L sucrose. IBA improved rooting, whereas, NAA (naphthaleneacetic acid) causes calli to form at the base of the shoots. The half-strength MS medium supplemented with 0.5 mg/L IBA provided the best rooting response for the shoot. This medium formulation resulted in the highest rooting rate (100%) and the highest mean root number (5 roots/explant). The result of the present study would be helpful for the mass propagation of commercially important H. retusa.
References
Amiri, S. and Mohammadi, R. 2021. Establishment of an efficient in vitro propagation protocol for Sumac (Rhus coriaria L.) and confirmation of the genetic homogeneity. Sci. Rep., 11: 173-182. DOI: https://doi.org/10.1038/s41598-020-80550-4
Badalamenti, O., Carra, A., Oddo, E., Carimi, F. and Sajeva, M. 2016. Is in vitro micrografting a possible valid alternative to traditional micropropagation in Cactaceae? Pelecyphora aselliformis as a case study. Springerplus, 5: 201-205. DOI: https://doi.org/10.1186/s40064-016-1901-6
Bairu, M.W., Stirk, W.A., Dolezal, K. and Van Staden, J. 2007. Optimizing the micropropagation protocol for the endangered Aloe polyphylla: Can meta-topolin and its derivatives serve as a replacement for benzyladenine and zeatin? Plant Cell, Tissue Organ Cult., 90: 15-23. DOI: https://doi.org/10.1007/s11240-007-9233-4
Bayer, M.B. 2012. New finds in Haworthia. Cactus Succulent. J., 84(1): 41-50. DOI: https://doi.org/10.2985/0007-9367-84.1.41
Chen, S., Xiong, Y., Yu, X., Pang, J., Zhang, T., Wu, K., Ren, H., Jian, S., Teixeira da Silva, J.A., Xiong, Y., Zeng S. and Ma, G. 2020. Adventitious shoot organogenesis from leaf explants of Portulaca pilosa L. Sci. Rep., 10: 3675. DOI: https://doi.org/10.1038/s41598-020-60651-w
Chen, Y.M., Huang, J.Z., Hou, T.W. and Pan, I.C. 2019. Effects of light intensity and plant growth regulators on callus proliferation and shoot regeneration in the ornamental succulent Haworthia. Bot. Stud., 60(1): 1-10. DOI: https://doi.org/10.1186/s40529-019-0257-y
Fadel, D. 2010. Effect of different strength of medium on organogenesis, phenolic accumulation, and antioxidant activity of spearmint (Mentha spicata L.). Open Hortic. J., 3(1): 31-35. DOI: https://doi.org/10.2174/1874840601003010031
Jaiswal, S. and Sawhney, S. 2006. Modulation of TDZ-induced morphogenetic responses by anti- auxin TIBA in bud-bearing foliar explants of Kalanchoe pinnata. Plant Cell, Tissue Organ Cult., 86(1): 69-76. DOI: https://doi.org/10.1007/s11240-006-9099-x
Kim, D.H., Kang, K.W. and Sivanesan, I. 2017. Micropropagation of Haworthia retusa Duval. Propag. Ornam. Plants, 17(3): 77-82.
Kim, D.H., Kang, K.W. and Sivanesan, I. 2019. Influence of auxins on somatic embryogenesis in Haworthia retusa Duval. Biologia (Bratisl.), 74(1): 25-33. DOI: https://doi.org/10.2478/s11756-018-0151-1
Kumari, A., Baskaran, P. and Van Staden, J. 2016. In vitro propagation and antibacterial activity in Cotyledon orbiculata: a valuable medicinal plant. Plant Cell, Tissue Organ Cult., 124(1): 97-104. DOI: https://doi.org/10.1007/s11240-015-0878-0
Liu, B.L., Fang, H.Z., Meng, C.R., Chen, M., Chai, Q.D., Zhang, K. and Liu, S.J. 2017. Establishment of a rapid and efficient micropropagation system for succulent plant Haworthia turgida Haw. HortScience, 52(9): 1278-1282. DOI: https://doi.org/10.21273/HORTSCI12056-17
Lizumi, M. and Amaki, W. 2011. Micropropagation of Haworthia cymbiformis through thin-cell- layer tissue culture. Comb. Proc. Int. Plant Propagators’ Soc., 61: 288-291.
Malik, S.K., Chaudhury, R. and Kalia, R.K. 2005. Rapid in vitro multiplication and conservation of Garcinia indica: A tropical medicinal tree species. Sci. Hortic. (Amsterdam)., 106(4): 539-553. DOI: https://doi.org/10.1016/j.scienta.2005.05.002
Monostori, T., Tanács, L. and Mile, L. 2012. Studies on in vitro propagation methods in cactus species of the genera Melocactus, Cereus, and Lobivia. Acta Hortic., 937: 255-261. DOI: https://doi.org/10.17660/ActaHortic.2012.937.31
Murashige, T. and Skoog, F. 1962. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant., 15(3): 473-497. DOI: https://doi.org/10.1111/j.1399-3054.1962.tb08052.x
Niguse, M., Sbhatu, D.B. and Abraha, H.B. 2020. In vitro micropropagation of Aloe adigratana Reynolds using offshoot cuttings. Sci. World J., 1-7. DOI: https://doi.org/10.1155/2020/9645316
Peìrez-Molphe-Balch, E., Peìrez-Reyes, M.E., Daìvila- Figueroa, C.A. and Villalobos-Amador, E. 2002. In vitro propagation of three species of Columnar cacti from the Sonoran Desert. HortScience, 37(4): 693-696. DOI: https://doi.org/10.21273/HORTSCI.37.4.693
Reshma, Y., Mazharul, I.M.D., Kim, H.Y., Kim, C.K. and Lim, K.B. 2020. Role of growth regulators in the somatic organogenesis of Haworthia inflorescences in vitro. Hortic. Sci. Technol., 38(3): 394-404.
Richwine, A.M., Tipton, J.L. and Thompson, G.A. 1995. Establishment of Aloe, Gasteria, and Haworthia shoot cultures from inflorescence explants. HortScience, 30: 1443-1444. DOI: https://doi.org/10.21273/HORTSCI.30.7.1443
Schenk, R.U. and Hildebrandt, A.C. 1972. Medium and techniques for induction and growth of monocotyledonous and dicotyledonous plant cell cultures. Can. J. Bot., 50: 199-204. DOI: https://doi.org/10.1139/b72-026
Downloads
Published
Issue
Section
License
Copyright (c) 2023 Thi Trinh Huong, Tuan Trong Tran
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Authors retain copyright. Articles published are made available as open access articles, distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original author and source are credited.
This journal permits and encourages authors to share their submitted versions (preprints), accepted versions (postprints) and/or published versions (publisher versions) freely under the CC BY-NC-SA 4.0 license while providing bibliographic details that credit, if applicable.