Phytoremediation of Indoor Air Pollutants: Harnessing the potential of Plants beyond Aesthetics

Authors

  • Shalini Jhanji Punjab Agricultural University, Ludhiana, Punjab 141004 Author
  • Ujjalpreet Kaur Dhatt Punjab Agricultural University, Ludhiana, Punjab 141004 Author

DOI:

https://doi.org/10.24154/jhs.v16i2.986

Keywords:

Phytoremediation, Indoor Air Pollutants, Indoor Air Quality, Human health, Potted Plants

Abstract

Indoor air pollution has emerged as a major threat to human health worldwide that needs to be dealt urgently. The present review is an effort to overview the different indoor air pollutants (CO2, volatile organic compounds (VOCs) like formaldehyde, benzene, nitrous oxide, trichloroethylene, fluorine, ammonia, radon, aldehyde, hydrocarbons etc.) their hazardous effects on human health, potential of indoor plants in their remediation and their practical utility. Besides providing oxygen to breathe, multifaceted roles of indoor plants have been well documented. Plants were used since decades for indoor decorations based on their aesthetic value, but now studies are focused on screening plant species for their efficiency in absorption of indoor air pollutants. The basis for phytoremediation is the potent efficiency of some plants to assimilate, degrade, or modify toxic pollutants into non-toxic ones. Phytoremediation seems to be the key solution to improve indoor air quality as it has many potential advantages (simple, potentially cheap, and easily implemented) in comparison to other traditional or latest methods. Breathing walls, portable air filters for rooms or whole house filtration through heating, ventilation and air conditioning systems are some of the technologies developed, to reduce indoor air pollution and improve indoor air quality but all these are costly, resource consuming and still there is question on their efficiency. Detailed account of morphological, anatomical and molecular mechanisms underlying plant leaves and leaf associated microbes in reduction of pollutants have been reviewed that could help in developing cost effective and eco friendly remediation technologies. This review gives a brief discussion about air phytoremediation to improve effectiveness of this technology in practical use.

Downloads

Download data is not yet available.

References

Agarwal, P., Sarkar, M., Chakraborty, B. and Banerjee, T. 2019. Phytoremediation of Air Pollutants: Prospects and Challenges. In: Phytomanagement of polluted sites; Pandey, V.C. and Bauddh, K., (Eds.) Elsevier, Amsterdam, p221-241. DOI: https://doi.org/10.1016/B978-0-12-813912-7.00007-7

Anderson, J. M. and Osmond, C. B. 1987. Shade-sun responses: compromises between acclimation and photoinhibition. In: Topics in photosynthesis. Photoinhibition; Kyle, D. J., Osmond, C. B. andArntzen, C.J., (Eds.) Elsevier, Amsterdam 9:1-38.

Anonymous, 2007. Plants at work, indoors. https://www.everythingzoomer.com/style/home-garden/2007/01/18/

Anonymous, 2008. Going outside even in cold improves memory attention. https://news.umich.edu/

Anonymous, 2016. 3 Helpful Plants to Purify the Air in Your Home. https://isha.sadhguru.org/uk/en/wisdom/article/

Anonymous, 2018a. Household air pollution and health. https://www.who.int/news-room/factsheets/detail/household-airpollutionandhealth

Anonymous, 2018b. Revision of the World Urbanization Prospects. Population Division of the United Nations, Department of Economic and Social Affairs (UN DESA). https://www.un.org/ development/desa/publications/2018-revision-ofworld- urbanization-prospects.html

Anonymous, 2021. Volatile Organic Compounds’ Impact on Indoor Air Quality.https://www.epa.gov/indoor-airquality-iaq/

Anonymous. 1998. Indoor Air Quality: Biological Contaminants: Report on a WHO Meeting, Rautavaara; World Health Organization Regional Office for Europe: Copenhagen, Denmark, 31.

Archibald, A. T., Folberth, G., Wade, D. C. and Scott, D. 2017. A world avoided: impacts of changes in anthropogenic emissions on the burden and effects of air pollutants in Europe and North America. Farad. Discuss., 200: 475-500. DOI: https://doi.org/10.1039/C7FD00004A

Aydogan, A. and Montoya, L. 2011. Formaldehyde removal by common indoor plant species and various growing media. Atmos. Environ., 45(16):2675-2682. DOI: https://doi.org/10.1016/j.atmosenv.2011.02.062

Baldacci, S., Maio, S., Cerrai, S., Sarno, G., Baýz, N., Simoni, M., Annesi-Maesano, I. and Viegi, G. 2015. Allergy and asthma: Effects of the exposure to particulate matter and biological allergens. Respir. Med., 109: 1089-1104. DOI: https://doi.org/10.1016/j.rmed.2015.05.017

Bandehali, S., Miri, T., Onyeaka, H. and Kumar, P. 2021. Current State of Indoor Air Phytoremediation Using Potted Plants and Green Walls. Atmosphere., 12: 473-497. DOI: https://doi.org/10.3390/atmos12040473

Barac, T., Taghavi, S., Borremans, B., Provoost, A., Oeyen, L., Colpaert, J. V., Vangronsveld, J. and van der Lelie, D. 2004. Engineered endophytic bacteria improve phytoremediation of watersoluble, volatile, organic pollutants. Nat. Biotechnol., 22:583-588. DOI: https://doi.org/10.1038/nbt960

Berman, M. G., Jonides, J. and Kaplan, S. 2008. The Cognitive Benefits of Interacting With Nature. Psychol. Sci. 19:1207-1212. DOI: https://doi.org/10.1111/j.1467-9280.2008.02225.x

Bernstein, J. A., Alexis, N., Bacchus, H., Bernstein, I. L., Fritz, P., Horner, E., Li, N., Mason, S., Nel, A., Oullette, J. and Reijula, K. 2008. The health effects of nonindustrial indoor air pollution. J. Allergy Clin. Immunol.. 121(3): 585-591. DOI: https://doi.org/10.1016/j.jaci.2007.10.045

Brickus, L. R., Cardoso, J. and Neto, F. R. D. A. 1998. Distributions of indoor and outdoor air pollutants in rio de janeiro, brazil: Implications to indoor air quality in bayside offices. Environ. Sci. Technol.. 32: 3485-3490. DOI: https://doi.org/10.1021/es980336x

Bringel, F. and Couee, I. 2015. Pivotal roles of phyllosphere microorganisms at the interface between plant functioning and atmospheric trace gas dynamics. Front. Microbiol., 6:486. DOI: https://doi.org/10.3389/fmicb.2015.00486

Brook, R. D., Rajagopalan, S., Pope, C. A., Brook, J. R., Bhatnagar, A., Diez-Roux, A. V., Holguin, F., Hong, Y., Luepker, R. V., Mittleman, M. A., Peters, A., Siscovick, D., Smith, S. C., Whitsel, L. and Kaufman, J. D. 2010. Particulate matter air pollution and cardiovascular disease: An update to the scientific statement from the american heart association. Circulation., 121(21): 2331-2378. DOI: https://doi.org/10.1161/CIR.0b013e3181dbece1

Bruno, R.C. 1983. Sources of indoor radon in houses: A review. J. Air Pollut. Control Assoc., 32: 105-109. DOI: https://doi.org/10.1080/00022470.1983.10465550

Bulińska, A., Popiołek, Z. and Bulińsk, Z. 2014. xperimentally validated CFD analysis on sampling region determination of average indoor carbon dioxide concentration in occupied space. Build. Environ., 72: 319-331. DOI: https://doi.org/10.1016/j.buildenv.2013.11.001

Burns, J., Boogaard, H., Polus, S., Pfadenhauer, L. M., Rohwer, A. C., van Erp, A. M., Turley, R. and Rehfuess, E. A. 2020. Interventions to reduce ambient air pollution and their effects on health: An abridged Cochrane systematic review. Environ. Int., 135: 105400. DOI: https://doi.org/10.1016/j.envint.2019.105400

Carinanos, P. and Casares-Porcel, M. 2011. Urban green zones and related pollen allergy: A review. Some guidelines for designing spaces with low allergy impact. Landsc. Urban Plan., 101: 205-214. DOI: https://doi.org/10.1016/j.landurbplan.2011.03.006

Chang, C. and Chen, P. 2005. Human response to window views and indoor plants in the workplace. Hort. Science., 40: 1354-1359. DOI: https://doi.org/10.21273/HORTSCI.40.5.1354

Colt, J. S., Lubin, J., Camann, D., Davis, S., Cerhan, J., Severson, R. K., Cozen, W. and Hartge, P. 2004. Comparison of pesticide levels in carpet dust and self-reported pest treatment practices in four us sites. J. Expo. Anal. Environ. Epidemiol., 14: 74-83. DOI: https://doi.org/10.1038/sj.jea.7500307

De Kempeneer, L., Sercu, B., Vanbrabant, W., Van Langenhove, H. and Verstraete, W. 2004. Bioaugmentation of the phyllosphere for the removal of toluene from indoor air. Appl.Microbiol. Biotechnol., 64: 284-288. DOI: https://doi.org/10.1007/s00253-003-1415-3

Fares, S., Paoletti, E., Loreto, F. and Brilli, F. 2015. Bidirectional flux of methyl vinyl ketone and methacrolein in trees with different isoprenoid emission under realistic ambient concentrations. Environ. Sci.Technol., 49: 7735-7742. DOI: https://doi.org/10.1021/acs.est.5b00673

Fjeld T. 2000. The Effect of Interior Planting on Health and Discomfort among Workers and School Children. Hort. Tech. 10: 46-52. DOI: https://doi.org/10.21273/HORTTECH.10.1.46

Gawronska, H. and Bakera, B. 2015. Phytoremediation of particulate matter from indoor air by Chlorophytum comosum L. plants. Air Qual. Atmos. Health., 8: 265-272. DOI: https://doi.org/10.1007/s11869-014-0285-4

Gommers, C. M., Visser, E. J., St Onge, K. R., Voesenek, L. A. and Pierik, R. 2013. Shade tolerance: when growing tall is not an option. Trends Plant Sci., 18: 65-71. DOI: https://doi.org/10.1016/j.tplants.2012.09.008

Hall, C. R. and Dickson, M. W. 2011. Economic, Environmental, and Health/Well-Being Benefits Associated with Green Industry Products and Services: A Review. J. Environ. Hort. 29: 96-103. DOI: https://doi.org/10.24266/0738-2898-29.2.96

Hamanaka, R. B. and Mutlu, G. M. 2018. Particulate matter air pollution: Effects on the cardiovascular system. Front. Endocrinol., 9: 680. DOI: https://doi.org/10.3389/fendo.2018.00680

Health Effects Institute. 2018. State of Global Air 2018. In: Health Effects Institute, Special Report, Boston, MA.

Holt, E., Audy, O., Booij, P., Melymuk, L., Prokes, R. and Klánová, J. 2017. Organochlorine pesticides in the indoor air of a theatre and museum intheczech republic: Inhalation exposure and cancer risk. Sci. Total Environ., 609: 598-606. DOI: https://doi.org/10.1016/j.scitotenv.2017.07.203

Hong, S. H., Hong, J., Yu, J. and Lim, Y. 2017. Study of the removal difference in indoor particulate matter and volatile organic compounds through the application of plants. Environ. Health Toxicol., 32: 2017006. DOI: https://doi.org/10.5620/eht.e2017006

Huang, Y., Yang, Z. and Gao, Z. 2019. Contributions of indoor and outdoor sources to ozone in residential buildings in nanjing. Int. J. Environ. Res. Public Health., 16: 2587. DOI: https://doi.org/10.3390/ijerph16142587

Hwang, H. M., Park, E. K., Young, T. M. and Hammock, B. D. 2008. Occurrence of endocrinedisrupting chemicals in indoor dust. Sci. Total Environ., 404: 26-35. DOI: https://doi.org/10.1016/j.scitotenv.2008.05.031

Irga, P. J., Torpy, F. R. and Burchett, M. D. 2013. Can hydroculture be used to enhance the performance of indoor plants for removal of air pollutants? Atmos. Environ., 77: 267-271. DOI: https://doi.org/10.1016/j.atmosenv.2013.04.078

Kampa, M. and Castanas, E. 2008. Human health effects of air pollution. Environ. Pollut., 151: 362-367. Kaplan, R. 2001. The nature of the view from home: Psychological benefits. Environ. Behav., 33: 507-542. DOI: https://doi.org/10.1016/j.envpol.2007.06.012

Kim, K. J., Jeong, M., Lee, D. W., Song, J. S., Kim, H. D. and Yoo, E. H. 2010. Variation in formaldehyde removal efficiency among indoor plant species. Hort. Science., 45: 1485-1498. DOI: https://doi.org/10.21273/HORTSCI.45.10.1489

Kim, K. J., Yoo, E. H., Jeong, M. I., Song, J. S., Lee, S. Y. and Keys, S. J. 2011. Changes in the phytoremediation potential of indoor plants with exposure to toluene. Hort. Science., 46: 1646-1649. DOI: https://doi.org/10.21273/HORTSCI.46.12.1646

Koivisto, A. J., Kling, K. I., Hänninen, O., Jayjock, M., Löndahl, J., Wierzbicka, A., Fonseca, A.S., Uhrbrand, K., Boor, B. E., Jiménez, A. S. and Hämeri, K. 2019. Source specific exposure and risk assessment for indoor aerosols. Sci. Total Environ., 668: 13-24. DOI: https://doi.org/10.1016/j.scitotenv.2019.02.398

Kulmala, M., Asmi, A. and Pirjola, L. 1999. Indoor air aerosol model: The effect of outdoor air, filtration and ventilation on indoor concentrations. Atmos. Environ., 33: 2133-2144. DOI: https://doi.org/10.1016/S1352-2310(99)00070-9

Li, S., Tosens, T., Harley, P. C., Jiang, Y., Kanagendran, A., Grosberg, M., Jaamets, K. and Niinemets, U. 2018. Glandular trichomes as a barrier against atmospheric oxidative stress: relationships with ozone uptake, leaf damage, and emission of LOX products across a diverse set of species. Plant Cell Environ., 41(6): 1263-1277. DOI: https://doi.org/10.1111/pce.13128

Liu, Y. J., Mu, Y. J., Zhu, Y. G., Ding, H. and Arnes, N. C. 2007. Which ornamental plant species effectively remove benzene from indoor air? Atm. Environ., 41: 650-654. DOI: https://doi.org/10.1016/j.atmosenv.2006.08.001

Lohr, V. I. 2010. What are the benefits of plants indoors and why do we respond positively to them? Acta Hortic., 881: 675-682. DOI: https://doi.org/10.17660/ActaHortic.2010.881.111

Lohr, V. I. and Pearson-Mims, C. H. 2000. Physical Discomfort May Be Reduced In Presence of Interior Plants. Hort. Tech., 10: 53-58. DOI: https://doi.org/10.21273/HORTTECH.10.1.53

Lohr, V. I., Pearson-Mims, C. H. and Goodwin, G. K. 1996. Interior plant may improve worker productivity and reduce stress in a windowless environment. J. Environ. Hort., 14: 97-100. DOI: https://doi.org/10.24266/0738-2898-14.2.97

Madany, I. M. 1994. The correlations between heavy metals in residential indoor dust and outdoor street dust in bahrain. Environ. Int., 20: 483-492. DOI: https://doi.org/10.1016/0160-4120(94)90197-X

Marco, M., Seifert, B. and Lindvall, T. 1995. Indoor air quality: A comprehensive reference book. Air quality monographs. Academic Press, New York.

Miller, M. R., Shaw, C. A. and Langrish, J. P. 2012. From particles to patients: Oxidative stress and the cardiovascular effects of air pollution. Future Cardiol., 8: 577-602. DOI: https://doi.org/10.2217/fca.12.43

Oh, H. J., Jeong, N. N., Sohn, J. R. and Kim, J. 2019. Personal exposure to indoor aerosols as actual concern: Perceived indoorand outdoor air quality, and health performances. Build. Environ., 165: 106403. DOI: https://doi.org/10.1016/j.buildenv.2019.106403

Oikawa, P. Y. and Lerdau, T. M. 2013. Catabolism of volatile organic compounds influences plant survival. Trends Plant Sci., 18: 695-703. DOI: https://doi.org/10.1016/j.tplants.2013.08.011

Panyametheekul, S., Rattanapun, T. and Ongwandee, M. 2018. Ability of artificial and live houseplants to capture indoor particulate matter. Indoor Built Environ., 27:121-128. DOI: https://doi.org/10.1177/1420326X16671016

Perry, L. 2018. Indoor plants provide many benefits. https://www.vtcng.com/

Pettit, T., Irga, P. J. and Torpy, F. R. 2018. Towards practical indoor air phytoremediation: a review. Chemosphere., 208: 960-974. DOI: https://doi.org/10.1016/j.chemosphere.2018.06.048

Prill, R. 2000. Why Measure Carbon Dioxide Inside Buildings? Washington State University Extension Energy Program, 07-003, pp 1–3.

Rackes, A. and Waring, M. S. 2014. Using multi objective optimizations to discover dynamic building ventilation strategies that can improve indoor air quality and reduce energy use. Energy Building., 75: 272-280. DOI: https://doi.org/10.1016/j.enbuild.2014.02.024

Rashed, M. N. 2008. Total and extractable heavy metals in indoor, outdoor and street dust from aswan city, Egypt. Clean., 36: 850-857. DOI: https://doi.org/10.1002/clen.200800062

Raub, J. A., Mathieu-Nolf, M., Hampson, N. B. and Thom, S. R. 2000. Carbon monoxide poisoning- A public health perspective. Toxicology., 145: 1-14. DOI: https://doi.org/10.1016/S0300-483X(99)00217-6

Salonen, H., Salthammer, T. and Morawska, L. 2018. Human exposure to ozone in school and office indoor environments. Environ. Int., 119: 503-514. DOI: https://doi.org/10.1016/j.envint.2018.07.012

Sandhu, A., Halverson, L. and Beattie, G. A. 2007. Bacterial degradation of air borne phenol in the phyllosphere. Environ. Microbiol. 9: 383-392. DOI: https://doi.org/10.1111/j.1462-2920.2006.01149.x

Schreck, E., Foucault, Y., Sarret, G., Sobanska, S., Ce´cillon, L., Castrec-Rouelle, M., Uzu, G. and Dumat, C. 2012. Metal and metalloid foliar uptake by various plant species exposed to atmospheric industrial fallout: mechanisms involved for lead. Sci. Total Environ., 427-428: 253-262. DOI: https://doi.org/10.1016/j.scitotenv.2012.03.051

Seow, W. J., Downward, G. S., Wei, H., Rothman, N., Reiss, B., Xu, J., Bassig, B. A., Li, J., He, J., Hosgood, H. D., Wu, G., Chapman, R. S., Tian, L., Wei, F., Caporaso, N. E., Vermeulen, R. and Lan, Q. 2016. Indoor concentrations of nitrogen dioxide and sulfur dioxide from burning solid fuels for cooking and heating in Yunnan Province, China. Indoor Air., 26(5): 776-783. DOI: https://doi.org/10.1111/ina.12251

Sharma, P., Tomar, P. C. and Chapadgaonkar, S. S. 2019. Phytoremediation of indoor pollution-a mini review. World J. Pharm. Res., 8(7): 2136-2143.

Shinohara, N., Mizukoshi, A. and Yangisawa, Y. 2004. Identification of responsible volatile chemicals that induce hypersensitive reactions to multiple chemical sensitivity patients. J. Expo. Anal. Environ. Epidemiol., 14: 84-91. DOI: https://doi.org/10.1038/sj.jea.7500303

Siskos, P. A., Bouba, K. E. and Stroubou, A. P. 2001. Determination of selected pollutants and measurement of physical parameters for the evaluation of indoor air quality in school building in Athens, Greece. Indoor Built Environ., DOI: https://doi.org/10.1159/000049235

(3-4): 185-192.

Smith, A. and Pitt, M. 2011. Healthy Workplaces: Plantscaping for indoor environmental quality. Facilities., 29 : 169-187. DOI: https://doi.org/10.1108/02632771111109289

Sriprapat, W., Boraphech, P. and Thiravetyan, P. 2013. Factor affecting xylene contaminated air removal by the ornamental plants Zamioculcaszamiifolia. Environ. Sci. Pollut. Res., 21: 2603-2610. DOI: https://doi.org/10.1007/s11356-013-2175-y

Susanto, A. D., Winardi, W., Hidayat, M. and De Gruyter, A. W. 2021. The use of indoor plant as an alternative strategy to improve indoor air quality in Indonesia.Rev. Environ. Health., 36(1): 95-99. DOI: https://doi.org/10.1515/reveh-2020-0062

Tang, X., Misztal, P. K., Nazaroff, W. W. and Goldstein, A. H. 2015. Siloxanes are the most abundant volatile organic compound emitted from engineering students in a classroom. Environ. Sci. Technol. Lett., 2: 303-307. DOI: https://doi.org/10.1021/acs.estlett.5b00256

Tani, A., Tobe, S. and Shimizu, S. 2009. Uptake of methacrolein and methyl vinyl ketone by tree saplings and implications for forest atmosphere. Environ. Sci.Technol., 44: 7096-7101. DOI: https://doi.org/10.1021/es1017569

Teiri, H., Pourzamzni, H. and Hajizadeh, Y. 2018. Phytoremediation of formaldehyde from indoor environment by ornamental plants: an approach to promote occupant’s health. Int. J. Prev. Med., 9: 70. DOI: https://doi.org/10.4103/ijpvm.IJPVM_269_16

Toabaita, M., Vangnai, A. S. and Thiravetyan, P. 2016. Removal of ethyl benzene from contaminated air by Zamioculcaszamiifolia and microorganisms associated on Z. zamiifolia leaves. Water Air Soil Pollut., 227: 1–11. DOI: https://doi.org/10.1007/s11270-016-2817-z

United Nations. 2004. World Urbanization Prospects (the 2003 Revision). In: New York, NY: Population Division, Department of Economic and Social Affairs, United Nations.

Van Aken, B., Yoon, J. M. and Schnoor, J. L. 2004. Biodegradation of nitro-substituted explosives 2,4,6-trinitrotoluene, hexahydro-1,3,5-trinitro- 1,3,5-triazine, and octahydro-1,3,5,7-tetranitro- 1,3,5-tetrazocine by a phytosymbiotic Methylobacterium sp. associated with poplar tissues (Populus deltoides × nigra DN34). Appl. Environ. Microbiol., 70: 508-517. DOI: https://doi.org/10.1128/AEM.70.1.508-517.2004

Watson, A. F. R. 2013. Indoor Air Quality in Industrial Nations. Earth Systems and Environmental Sciences. DOI: https://doi.org/10.1016/B978-0-12-409548-9.01243-4

Wei, X., Lyu, S., Yu, Y., Wang, Z., Liu, H., Pan, D. and Chen, J. 2017. Phylloremediation of air pollutants: Exploiting the potential of plant leaves and leaf-associated microbes. Front. Plant Sci., 8:1318. DOI: https://doi.org/10.3389/fpls.2017.01318

Weschler, C. J. and Nazaroff, W. W. 2012. Svoc exposure indoors: Fresh look at dermal pathways. Indoor Air., 22: 356-377. DOI: https://doi.org/10.1111/j.1600-0668.2012.00772.x

Wolverton, B. C., Johnson, A. and Bounds, K. 1989. Interior landscape plants for indoor air pollution abatement. In: Plants for clear air council, NASA, Stennis Space Center, Mitchellville, Marryland.

Wood, R. A., Burchett, M. D., Alquezar, R., Orwell, R. L., Tarran, J. and Torpy, F. 2006. The pottedplant microcosm substantially reduces indoor air VOC pollution: I. Office field-study. Water Air Soil Pollut., 175: 163-180. DOI: https://doi.org/10.1007/s11270-006-9124-z

Yrieix, C., Dulaurent, A., Laffargue, C., Maupetit, F., Pacary, T. and Uhde, E. 2010. Characterization of VOC and formaldehyde emissions from a wood based panel: results from an inter-laboratory comparison. Chemosphere., 79(4): 414-419. DOI: https://doi.org/10.1016/j.chemosphere.2010.01.062

Zabiegala, B. 2006. Organic compounds in indoor environments. Polish J. Environ. Stud., 15: 383-393.

Zhai, Z. 2016. Breathing wall: concept and thermal performance. Cityscape., 18: 183-188.

Downloads

Published

31-12-2021

Issue

Section

Review

How to Cite

Shalini Jhanji, & Dhatt, U. K. (2021). Phytoremediation of Indoor Air Pollutants: Harnessing the potential of Plants beyond Aesthetics. Journal of Horticultural Sciences, 16(2), 131-143. https://doi.org/10.24154/jhs.v16i2.986

Similar Articles

1-10 of 350

You may also start an advanced similarity search for this article.