Molecular characterization of Apis florea (Hymenoptera: Apidae), An unsung pollinator of major horticultural crops

Authors

  • Premika R. Ramasamy Agricultural college and Research institute, Madurai, TNAU Author
  • Suresh K Krishnasamy AC & RI, Madurai, TNAU Author
  • Usharani B. Balakrishnan ICAR - KVK, TNAU, Aruppukkottai Author
  • Nalini R. Ramiah Agricultural college and Research institute, Madurai, TNAU Author
  • Arul Arasu P. Palanisamy ICAR - KVK, TNAU, Madurai Author
  • Asokan R. Ramasamy ICAR-IIHR, Bengaluru Author
  • Ashok K. Karuppannasamy ICAR -IIHR, Bengaluru Author

DOI:

https://doi.org/10.24154/jhs.v19i2.3515

Keywords:

Apis florea, pollinator, phylogeny, Evolution, Genetic Diversity

Abstract

Apis florea (Hymenoptera: Apidae), also known as the red dwarf honeybee due to its reddish-brown abdomen and small size, is the smallest known bee species. These stingless bees play a vital role in pollinating wild and cultivated plants in their habitat. This study examines A. florea populations from Tamil Nadu, Bengaluru, Maharashtra, and Gujarat, shedding light on their genetic diversity and evolutionary relationships. Gel electrophoresis revealed a common band of around 800 base pairs in all samples, indicating a shared genetic fragment. This consistency suggests conserved genetic traits across different groups. Molecular analysis showed high sequence similarity with reference sequences from the NCBI database, with slight regional variations. A phylogenetic tree, backed by high bootstrap values, demonstrated strong genetic similarity among the isolates, distinguishing them from A. mellifera. Pairwise nucleotide difference ranged from 370 to 402, indicating moderate genetic diversity. The closest genetic relationship was between the Tamil Nadu and Gujarat isolates, while the greatest differences were between Bangalore and Maharashtra. This points to distinct genetic lineages shaped by geographic variation. PCA and MDS analyses confirmed the genetic diversity, with the Bangalore isolate showing the most divergence. The Haplotype Network and Minimum Spanning Tree analyses further highlighted the unique genetic characteristics of the Bangalore isolate. Overall, the study underscore highlights both genetic uniformity and diversity within A. florea, reflecting their evolutionary dynamics and adaptation to different regions. These findings are important for the conservation and management of these species.

Downloads

Download data is not yet available.

Author Biographies

  • Premika R. Ramasamy , Agricultural college and Research institute, Madurai, TNAU

    M.Sc. Department of Agricultural Entomology, Agricultural College and Research Institute, Tamil Nadu Agricultural University, Madurai, Tamil Nadu, India

  • Suresh K Krishnasamy, AC & RI, Madurai, TNAU
    Tamil Nadu Agricultural University: Coimbatore, Tamil Nadu, IN   1997-07-14 to present | PROESSOR AND HEA (PLANT PATHOLOGY)
  • Usharani B. Balakrishnan, ICAR - KVK, TNAU, Aruppukkottai

    Ph. D Assoc. Professor (Agricultural Entomology), Indian Council of Agricultural Research - Krishi Vigyan Kendra, TNAU, Aruppukottai, Tamil Nadu, India.

  • Nalini R. Ramiah, Agricultural college and Research institute, Madurai, TNAU

    Ph. D, Professor and Head, Department of Agrl.Entomology, Agricultural College and Research Institute, Tamil Nadu Agricultural University, Madurai, Tamil Nadu, India

  • Arul Arasu P. Palanisamy, ICAR - KVK, TNAU, Madurai

    Ph. D, Associate Professor (Horticulture), Indian Council of Agricultural Research - Krishi Vigyan Kendra, TNAU, Madurai, Tamil Nadu, India

  • Asokan R. Ramasamy, ICAR-IIHR, Bengaluru

    Principal Scientist,  Agrl Entomology, Division of Basic Sciences (Biotechnology), ICAR-Indian Institute of Horticultural Research, Bengaluru, Karnataka, India.

  • Ashok K. Karuppannasamy, ICAR -IIHR, Bengaluru

    ICAR-Indian Institute of Horticultural Research, Bengaluru, Karnataka, India.

    Tata Institute for Genetics and Society, Bengaluru, Karnataka, India

References

Alhissnawi, M. S., Karrem, A. A., & AL-Abedy, A. N. (2024, July). Molecular Identification of Dwarf Honey Bees (Apis florea Fabricius) Distributed in the Eastern Region of Iraq. In IOP Conference Series: Earth and Environmental Science (Vol. 1371, No. 3, p. 032046). IOP Publishing. 10.1088/1755-1315/1371/3/032046

Ali, M. A., Mahmoud, M. A., & Salem, S. A. (2023). Molecular identification of Dwarf Bees Apis florea species discovered on the Golden Triangle area, Red Sea, Egypt. SVU-International Journal of Agricultural Sciences, 5(3), 81-91. 10.21608/SVUIJAS.2023.235757.1309

Babu, C. P. (2023). New haplotypes of honey bees (Apis spp.) In Kerala, India—identification by mitochondrial gene and its genetic similarity to South East Asian haplotypes. Apidologie, 54(3), 27. https://doi.org/10.1007/s13592-023-01000-4

Biesmeijer, J. C., Roberts, S. P., Reemer, M., Ohlemuller, R., Edwards, M., Peeters, T., & Kunin, W. E. (2006). Parallel declines in pollinators and insect-pollinated plants in Britain and the Netherlands. Science, 313(5785), 351-354. https://doi.org/10.1126/science.1127863

Deodikar, G.B., Sharma, M., Datir, S.R. (2019). ‘Diversity and abundance of insect pollinators in the urban ecosystem of Pune, India’, Journal of Insect Science, 19, 1, pp. 1-9.

Felsenstein, J. (1985). Confidence limits on phylogenies: an approach using the bootstrap’, Evolution, 39(4), pp. 783-791. https://doi.org/10.1111/j.1558-5646.1985.tb00420.x

Gotelli, N. J. (2004). A taxonomic wish–list for community ecology. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 359(1444), 585-597. https://doi.org/10.1098/rstb.2003.1443

He, H. F., Zhao, C. C., Zhu, C. Q., Yan, W. L., Yan, M. H., Zhang, Z. L., ... & Yan, F. M. (2023). Discovery of novel whitefly vector proteins that interact with a virus capsid component mediating virion retention and transmission. International Journal of Biological Macromolecules, 226, 1154-1165. https://doi.org/10.1016/j.ijbiomac.2022.11.229

Hebert, P. D., Cywinska, A., Ball, S. L., & dewaard, J. R. (2003). Biological identifications through DNA barcodes. Proceedings of the Royal Society of London. Series B: Biological Sciences, 270(1512), 313-321. https://doi.org/10.1098/rspb.2002.2218

Kevan, P. G. (1999). Pollinators as bioindicators of the state of the environment: species, activity and diversity. In Invertebrate biodiversity as bioindicators of sustainable landscapes (pp. 373-393). Elsevier. https://doi.org/10.1016/B978-0-444-50019-9.50021-2

Kevan, P. G., Greco, C. F., & Belaoussoff, S. (1997). Log-normality of biodiversity and abundance in diagnosis and measuring of ecosystemic health: pesticide stress on pollinators on blueberry heaths. Journal of Applied Ecology, 1122-1136 https://doi.org/10.2307/2405226

Köhler, F. (2007). From DNA taxonomy to barcoding–how a vague idea evolved into a biosystematic tool. Zoosystematics and evolution, 83(S1), 44-51.(doi: 10.1002/mmnz.200600025.) https://doi.org/10.1002/mmnz.200600025

Lynn, K. M., Wingfield, M. J., Durán, A., Marincowitz, S., Oliveira, L. S., De Beer, Z. W., & Barnes, I. (2020). Euwallacea perbrevis (Coleoptera: Curculionidae: Scolytinae), a confirmed pest on Acacia crassicarpa in Riau, Indonesia, and a new fungal symbiont; Fusarium rekanum sp. Nov. Antonie van Leeuwenhoek, 113(6), 803-823. https://doi.org/10.1007/s10482-020-01392-8(0123456789().,-volV)

Ojha, R., Jalali, S. K., Shivalingaswamy, T. M., Venkatesan, T., Poorani, J., & Galande, S. M. (2016). Identification of insect community inhabiting Kaas plateau, Western ghats through cytochrome oxidase subunit I gene. Journal of Applied and Natural Science, 8(4), 2170-2174.

https://doi.org/10.31018/jans.v8i4.1107

Oldroyd, B. P. (2021). Dwarf Honey Bees (Apis (Micrapis)). In Encyclopedia of Social Insects (pp. 333-339). Cham: Springer International Publishing.

Oldroyd, B. P., & Wongsiri, S. (2009). Asian honey bees: biology, conservation, and human interactions. Harvard University Press.

Potts, S. G., Imperatriz-Fonseca, V., Ngo, H. T., Aizen, M. A., Biesmeijer, J. C., Breeze, T. D., & Vanbergen, A. J. (2016). Safeguarding pollinators and their values to human well-being. Nature, 540(7632), 220-229.

Potts, S. G., Imperatriz-Fonseca, V., Ngo, H. T., Biesmeijer, J. C., Breeze, T. D., Dicks, L. V., ... & Vanbergen, A. J. (2016). The assessment report on pollinators, pollination and food production: summary for policymakers. Secretariat of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services.http://www.ipbes.net/sites/default/files/downloads/pdf/SPM_Deliverable_3a_Pollination.pdf

Rattanawannee, A., Chanchao, C., & Wongsiri, S. (2007). Morphometric and genetic variation of small dwarf honeybees Apis andreniformis Smith, 1858 in Thailand. Insect Science, 14(6), 451-460. https://doi.org/10.1111/j.1744-7917.2007.00173.x

Saitou, N., & Nei, M. (1987). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Molecular biology and evolution, 4(4), 406-425. https://doi.org/10.1093/oxfordjournals.molbev.a040454

Sheffield, C. S., Hebert, P. D., Kevan, P. G., & Packer, L. (2009). DNA barcoding a regional bee (Hymenoptera: Apoidea) fauna and its potential for ecological studies. Molecular Ecology Resources, 9, 196-207. https://doi.org/10.1111/j.1755-0998.2009.02645.x

Smith, D. R. (Ed.). (2019). Diversity in the genus Apis. CRC Press.

Smith, M. A., Fisher, B. L., & Hebert, P. D. (2005). DNA barcoding for effective biodiversity assessment of a hyperdiverse arthropod group: the ants of Madagascar. Philosophical Transactions of the Royal Society B: Biological Sciences, 360(1462), 1825-1834. https://doi.org/10.1098/rstb.2005.1714

Sooraj, S., Nisha, M. S., Narayana, R., & Kumar, H. K. (2023). Pathogenicity of native Strains of Entomopathogenic Nematodes against Aphids and Pseudostem Weevil. Indian Journal of Entomology, 1-6. https://doi.org/10.55446/IJE.2023.1285

Takahashi, J. I., Deowanish, S., & Okuyama, H. (2018). Analysis of the complete mitochondrial genome of the giant honeybee, Apis dorsata (Hymenoptera: Apidae) in Thailand. Conservation Genetics Resources, 10, 833-838.

Tamura, K., Nei, M., & Kumar, S. (2004). Prospects for inferring very large phylogenies by using the neighbor-joining method. Proceedings of the National Academy of Sciences, 101(30), 11030-11035. https://doi.org/10.1073/pnas.0404206101

Tamura, K., Stecher, G., & Kumar, S. (2021). MEGA11: molecular evolutionary genetics analysis version 11. Molecular biology and evolution, 38(7), 3022-3027. https://doi.org/10.1093/molbev/msab120

Terzi, B., Koca, A. O., Gharkheloo, M. M., Sözen, M., & Kandemir, İ. (2014). Genetıc variation of dwarf honeybee (Apis florea Fabricius) populations distributed in the western part of Iran based on rapd analysis.

Weeks, P. J. D., O’Neill, M. A., Gaston, K. J., & Gauld, I. D. (1999). Automating insect identification: exploring the limitations of a prototype system. Journal of Applied Entomology, 123(1), 1-8.https://doi.org/10.1046/j.1439-0418.1999.00307.x

Downloads

Published

28-12-2024

How to Cite

Ramasamy, P., Krishnasamy, S. K., Balakrishnan, U. ., Ramiah, N., Palanisamy, A. A. ., Ramasamy, A. ., & Karuppannasamy, A. . (2024). Molecular characterization of Apis florea (Hymenoptera: Apidae), An unsung pollinator of major horticultural crops. Journal of Horticultural Sciences, 19(2). https://doi.org/10.24154/jhs.v19i2.3515

Similar Articles

1-10 of 127

You may also start an advanced similarity search for this article.