Morpho-physiological characterization of second generation colchiploids in sweet orange (Citrus sinensis (L.) Osbeck) cv. Mosambi

Authors

  • K N Kiran ICAR-Indian Agricultural Research Institute, New Delhi - 110012, India Author
  • A Singh ICAR-Indian Agricultural Research Institute, New Delhi - 110012, India Author https://orcid.org/0009-0006-0250-6218
  • S K Singh ICAR-Indian Agricultural Research Institute, New Delhi - 110012, India Author
  • O P Awasthi ICAR-Indian Agricultural Research Institute, New Delhi - 110012, India Author
  • P Yadav ICAR-Indian Agricultural Research Institute, New Delhi - 110012, India Author
  • K B Sandeep ICAR-Indian Agricultural Research Institute, New Delhi - 110012, India Author

DOI:

https://doi.org/10.24154/jhs.v19i1.2417

Abstract

Induction of tetraploidy in citrus is commonly meant for the development of triploid seedless cultivars as well as resistance against abiotic and biotic stresses. Three-year-old, 20 second-generation colchicine treated (0.05, 0.10, 0.15 and 0.20%) plants (colchiploids), established from the putative tetraploid branches of the first generation colchiploids of sweet orange (Citrus sinensis (L.) Osbeck) cv. Mosambi vegetatively propagated on Jatti khatti rootstock, along with their wild (parent) type, were characterized based on morphological and physiological traits. Plant height and canopy volume were reduced, but stem girth, nodes per shoot and bark: wood increased in the majority of the second-generation colchiploids related to the wild type. Colchiploids also possessed improved flower characteristics in terms of length and width. The stomatal dimensions increased, but stomatal concentration reduced in all the colchiploids. Colchicine treatment also caused significant variations in leaf gas exchange parameters, including photosynthetic rate, intercellular CO2 concentration, leaf net transpiration rates, stomatal conductance, and intrinsic water use efficiency in colchiploids affecting their photosynthetic activities. The solid tetraploids identified on the basis of morpho-physiological characterization can be used in future breeding programmes for the development of triploid seedless citrus cultivars or can be used for the mitigation of biotic and abiotic stresses.

Author Biographies

  • K N Kiran, ICAR-Indian Agricultural Research Institute, New Delhi - 110012, India

    Ph.D. Scholar, Division of Fruits and Horticultural Technology, ICAR-Indian Agricultural Research Institute, New Delhi - 110012, India

  • A Singh, ICAR-Indian Agricultural Research Institute, New Delhi - 110012, India

    Principal Scientist, Division of Fruits and Horticultural Technology, ICAR-Indian Agricultural Research Institute, New Delhi - 110012, India

  • S K Singh, ICAR-Indian Agricultural Research Institute, New Delhi - 110012, India

    Principal Scientist  and Director, Division of Fruits crops ICAR-Indian Institute of Horticultural Research, Bengaluru 560089 

  • O P Awasthi, ICAR-Indian Agricultural Research Institute, New Delhi - 110012, India

    Principal Scientist & Head, Division of Fruits and Horticultural Technology, ICAR-Indian Agricultural Research Institute, New Delhi 110012

  • P Yadav, ICAR-Indian Agricultural Research Institute, New Delhi - 110012, India

    Senior Scientist, Division of genetics ICAR-Indian Agricultural Research Institute, New Delhi 110012

  • K B Sandeep, ICAR-Indian Agricultural Research Institute, New Delhi - 110012, India

    Division of Fruits and Horticultural Technology, ICAR-Indian Agricultural Research Institute, New Delhi 110012

References

Abdolinejad, R., Shekafandeh, A., & Jowkar, A. (2021). In vitro tetraploidy induction creates enhancements in morphological, physiological and phytochemical characteristics in the fig tree (Ficus carica). Plant Physiology and Biochemistry, 166, 192-202. doi: 10.1016/j.plaphy.2021.05.047

Ainsworth, E. A., Rogers, A., Nelson, R., & Long, S. P. (2004). Testing the “source—sink” hypothesis of down-regulation of photosynthesis in elevated [CO2] in the field with single gene substitutions in Glycine max. Agricultural and Forest Meteorology, 122 (1-2), 85-94.

Aleza, P., Juarez, J., Cuenca, J., Ollitrault, P., & Navarro, L. (2009). Extensive citrus triploid hybrid production by 2x times 4x sexual hybridizations and parent-effect on the length of the juvenile phase. Plant Cell Reports, 31(9), 1723-1735. doi: 10.1007/s00299-012-1286-0

Anonymous (2022). Indian Horticulture Databases. Published by National Horticulture Board.

Ari, E., Djapo, H., Mutlu, N., Gurbuz, E., & Karaguzel, O. (2015). Creation of variation through gamma irradiation and polyploidization in Vitex agnuscastus L. Scientia Horticulturae, 195, 7-81. https://doi.org/10.1016/j.scienta.2015.08.039

Barrett, H.C., & Hutchison, D.J. (1978). Spontaneous tetraploidy in apomictic seedlings of Citrus. Economic Botany, 32(1), 27-45.

Bhuvaneswari, G., Thirugnanasampandan, R., & Gogulramnath, M., (2020). Effect of colchicine induced tetraploidy on morphology, cytology, essential oil composition, gene expression and antioxidant activity of Citrus limon (L.) Osbeck. Physiology and Molecular Biology of Plants, 26(2), 271-279. doi: 10.1007/s12298-019-00718-9.

Blasco, M., Badenes, M. L., & Naval, M. (2015). Colchicine-induced polyploidy in loquat (Eriobotrya japonica). Plant Cell, Tissue and Organ Culture, 120(2), 453-461. https://doi.org/10.1007/s11240-014-0612-3

Bora, L., Vijayakumar, R. M., Ganga, M., Meenakshi, N., Sarkar, M., & Kundu, M. (2023). Induction of polyploids in acid lime (Citrus aurantifolia) through colchicine treatment of in vitro derived shoot tip explants. Plant Breeding, 142(1), 118-127. https://doi.org/10.1111/pbr.13068

Fakhrzad, F., & Jowkar, A. (2023). Water stress and increased ploidy level enhance antioxidant enzymes, phytohormones, phytochemicals and polyphenol accumulation of tetraploid induced wallflower. Industrial Crops and

Products, 206, 117612. https://doi.org/10.1016/j.indcrop.2023.117612

He, L., Ding, Z., Jiang, F., Jin, B., Li, W., Ding, X., Sun, J., & Lv, G. (2012). Induction and identification of hexadecaploid of Pinellia ternate. Euphytica, 186(2), 479-488. doi:10.1007/s10681-012-0642-z

Kashtwari, M., Jan, S., Wani, A. A., & Dhar, M. K. (2022). Induction of polyploidy in saffron (Crocus sativus L.) using colchicine. Journal of Crop Improvement, 36(4), 555-581. doi: 10.1080/15427528.2021.1994502

Kushwah, K. S., Verma, R. C., Patel, S., & Jain, N. K. (2018). Colchicine induced polyploidy in Chrysanthemum carinatum L. Journal of Phylogenetics and Evolutionary Biology, 6(193), 2. doi: 10.4172/2329-9002.1000193

Manzoor, A., Ahmad, T., Bashir, M. A., Baig, M. Q., Quresh, A. A., Shah, M. K. N., & Hafiz, I. A. (2018). Induction and identification of colchicine induced polyploidy in Gladiolus grandiflorus ‘White Prosperity’. Folia Horticulturae, 30(2), 307-319. doi: 10.2478/fhort-2018-0026

Nobel, P. S. (1999). Physicochemical and Environmental Plant Physiology 2nd ed, Academic Press, San Diego, CA. https://doi.org/10.1046/j.1365-2664.1999.00459-5.x

Ren, J. I. A. N., Wu, X., Song, C., Liang, Y., Gao, W., and Wang, Y. (2018). Induction of polyploid tillered onion using colchicine and pendimethalin. Sains Malaysiana, 47(11), 2617-2624. http://dx.doi.org/10.17576/jsm2018-4711-04

Sampson, J. (1961). A method of replicating dry or moist surfaces for examination by light microscopy. Nature, 191(4791), 932-933. doi:10.1038/191932a0.

Sinski, I., Dal Bosco, D., Pierozzi, N. I., Maia, J. D. G., Ritschel, P. S., & Quecini, V. (2014). Improving in vitro induction of autopolyploidy in grapevine seedless cultivars. Euphytica, 196(2), 299-311. doi: 10.1007/s10681-013-1034-8

Suliman, H. H., & Asander, H. S. (2020). Polyploidy induction by colchicine in Robinia pseudoacacia L. and its effect on

morphological, physiological and anatomical seedling traits. The Iraqi Journal of Agricultural Science, 51(3), 829-847.

Tan, F. Q., Zhang, M., Xie, K. D., Fan, Y. J., Song, X., Wang, R., Wu, X. M., Zhang, H. Y., & Guo, W. W. (2019). Polyploidy remodels fruit metabolism by modifying carbon source utilization and metabolic flux in Ponkan mandarin (Citrus reticulata). Plant Science, 289, 110276.

Tang, Z. Q., Chen, D. L., Song, Z. J., He, Y. C., & Cai, D. T. (2010). In vitro induction and identification of tetraploid plants of Paulownia tomentosa. Plant Cell, Tissue and Organ Culture, 102(2), 213-220. doi: 10.1007/s11240-010-9724-6

Tossi, V. E., Martinez, T. L. J., Laino, L. E., Iannicelli, J., Regalado, J. J., Escandon, A. S., & Pitta, A. S. I. (2022). Impact of polyploidy on plant tolerance to abiotic and biotic stresses. Frontiers in Plant Science, 13, 869423. https://doi.org/10.3389/fpls.2022. 869423

Usman, M., Fatima, B., & Rana, I. A. (2021). Morphological and stomatal diversity in colchiploid germplasm of grapefruit. Pakistan Journal of Agriculture Science, 58(2), 555-560. doi: 10.21162/pakjas/21.1499

Downloads

Published

10-06-2024

Issue

Section

Original Research Papers

How to Cite

Kiran, K. N., Singh, A., Singh, S. K., Awasthi, O. P., Yadav, P., & Sandeep, K. B. (2024). Morpho-physiological characterization of second generation colchiploids in sweet orange (Citrus sinensis (L.) Osbeck) cv. Mosambi. Journal of Horticultural Sciences, 19(1). https://doi.org/10.24154/jhs.v19i1.2417