Genetic divergence in Chrysanthemum (Dendranthema x grandiflora Tzvelev) based on morphological traits

Authors

  • G Anamika ICAR-Indian Institute of Horticultural Reseach, Hesaraghatta Lake Post, Bengaluru 560089 https://orcid.org/0000-0003-1234-0320
  • R Kumar ICAR-Indian Institute of Horticultural Research, Hesaraghatta Lake Post, Bengaluru 560089, Karnataka
  • C Aswath ICAR-Indian Institute of Horticultural Research, Hesaraghatta Lake Post, Bengaluru 560089, Karnataka
  • P Tejaswini ICAR-Indian Institute of Horticultural Research, Hesaraghatta Lake Post, Bengaluru 560089, Karnataka
  • P Bennurmath ICAR-Indian Institute of Horticultural Research, Hesaraghatta Lake Post, Bengaluru 560089, Karnataka

DOI:

https://doi.org/10.24154/jhs.v18i2.2243

Keywords:

Chrysanthemum, genetic diversity, Mahalanobis D2 statistics, morphological traits

Abstract

Genetic diversity of thirty-one genotypes of Chrysanthemum were analysed for various growth and flowering related traits. Analysis of variance revealed significant differences among the genotypes for all the morphological traits studied. The clustering pattern based on Mahalanobis D2 statistics categorised genotypes into six distinct clusters. The largest cluster i.e. cluster III composed of eleven genotypes followed by cluster II with nine genotypes, cluster I having eight genotypes and cluster IV, V, and VI with one genotype each. The maximum inter-cluster distance was recorded between clusters IV and cluster V (376.87) followed by clusters IV and cluster VI (344.96) and, cluster II and cluster IV (196.81). The maximum intra-cluster distance was observed for cluster III (56.57), followed by cluster II (46.87) and cluster I (29.52). Among all the clusters, genotypes in cluster II recorded highest cluster mean values for number of branches per plant (7.15), number of leaves (119.72) and flowers (91.69) per plant. Among nine characters, number of flowers per plant contributed maximum to divergence (32.26%). Therefore, for chrysanthemum improvement, highly diverse genotypes can be used as parents for crossing to generate high variability.

Downloads

Download data is not yet available.

References

Baliyan, D., Sirohi, A., Kumar, M., Kumar, V., Malik, S., Sharma, S., & Sharma, S. (2014). Comparative genetic diversity analysis in chrysanthemum: A pilot study based on morpho-agronomic traits and ISSR markers. Scientia Horticulturae, 167, 164-168.

Bharathi, T. U., & Jawaharlal, M. (2014). Genetic divergence of African marigold (Tagetes erecta L.). Biosciences, p. 2233.

Bhargav, V., Kumar, R., Bharathi, T. U., Dhananjaya, M. V., & Rao, T. M. (2023). Assessment of genetic diversity in China aster [Callistephus chinensis (L.) Nees]. Journal of Horticultural Sciences, 18(1), 84-89. doi: https://doi.org/10.24154/jhs.v18i1.2138

Dalda-Sekerci, A. (2023). Comprehensive assessment of genetic diversity in chrysanthemum germplasm using morphological, biochemical and retrotransposon-based molecular markers. Genetic Resources and Crop Evolution, 70(08), 1-16. doi: 10.1007/s10722-023-01634-4

Doshi, S. P., & Gupta, K. C. (1991). SPAR-1 software. Indian Agricultural Statistical Research, New Delhi, India.

Fu, X., Ning, G., Gao, L., & Bao, M. (2008). Genetic diversity of Dianthus accessions as assessed using two molecular marker systems (SRAPs and ISSRs) and morphological traits. Scientia Horticulturae, 117(3), 263-270. doi: 10.1016/j.scienta.2008.04.001

Hadizadeh, H., Samiei, L., & Shakeri, A. (2022). Chrysanthemum, an ornamental genus with considerable medicinal value: A comprehensive review. South African Journal of Botany, 144, 23-43. https://doi.org/10.1016/j.sajb.2021.09.007

Jo, K. M., Jo, Y., Chu, H., Lian, S., & Cho, W. K. (2015). Development of EST-derived SSR markers using next-generation sequencing to reveal the genetic diversity of 50 chrysanthemum cultivars. Biochemical Systematics and Ecology, 60, 37-45. https://doi.org/10.1016/j.bse.2015.03.002

Kameswari, P. L., Pratap, M., Anuradha, G., & Begum, H. (2014). Genetic divergence studies in chrysanthemum (Dendranthema grandiflora Tzvelev). Indian Journal of Scientific Research and Technology, 2, 4-10.

Kaur, S., Sidhu, M. K., & Dhatt, A. S. (2021). Genetic diversity analysis through cluster constellation in brinjal (Solanum melongena L.). Genetika, 53(2), 629-640. doi: 10.2298/GENSR2102629K

Kavitha, R., & Anburani, A. (2009). Genetic diversity in African marigold (Tagetes erecta L.) genotypes. Journal of Ornamental Horticulture, 12(3), 198-201.

Kumar, R., Kumar, S., Kumar, P., & Mer, R. (2011). Genetic variability and divergence analysis in snapdragon (Antirrhinum majus L.) under Tarai conditions of Uttarakhand. Progressive Horticulture, 43(2), 332-336.

Kumar, S., Kumar, M., Kumar, R., Malik, S., Singh, M. K., & Kumar, S. (2016). Analysis of genetic divergence in chrysanthemum (Dendranthema grandiflora Tzvelev) germplasm using morphological markers. International Journal of Agricultural and Statistical Sciences, 12(2), 255-260.

Nguyen, T. K., Ha, S. T. T., & Lim, J. H. (2020). Analysis of chrysanthemum genetic diversity by genotyping-by-sequencing. Horticulture, Environment, and Biotechnology, 61, 903-913.

Panwar, S., Singh, K. P., & Janakiram, T. (2014). Assessment of genetic diversity of marigold (Tagetes erecta L.) genotypes based on morphological traits. Journal of Ornamental Horticulture, 17(3&4), 77-81.

Rao, C. R. (1952). Advanced statistical methods in biometric research. John Wiley and Sons, New York. https://doi.org/10.1002/ajpa.1330120224

Downloads

Published

31-12-2023

Issue

Section

Original Research Papers

How to Cite

Genetic divergence in Chrysanthemum (Dendranthema x grandiflora Tzvelev) based on morphological traits. (2023). Journal of Horticultural Sciences, 18(2). https://doi.org/10.24154/jhs.v18i2.2243

Similar Articles

1-10 of 203

You may also start an advanced similarity search for this article.