Spectrum of chlorophyll mutations and morphological variations in Abelmoschus esculentus L. induced through gamma radiation

Authors

  • S Sasipriya Keladi Shivappa Nayaka University of Agricultural and Horticultural University, Shivamogga - 577216, Karnataka, India Author
  • S Gangaprasad Keladi Shivappa Nayaka University of Agricultural and Horticultural University, Shivamogga - 577216, Karnataka, India Author
  • B M Dushyantha Kumar Keladi Shivappa Nayaka University of Agricultural and Horticultural University, Shivamogga - 577216, Karnataka, India Author
  • A Nagarajappa Keladi Shivappa Nayaka University of Agricultural and Horticultural University, Shivamogga - 577216, Karnataka, India Author
  • H Basavaraj Keladi Shivappa Nayaka University of Agricultural and Horticultural University, Shivamogga - 577216, Karnataka, India Author
  • B N Harish Babu AICRP (Groundnut), Zonal Agricultural and Horticultural Research Station, Hiriyur - 577598, Karnataka, India Author

DOI:

https://doi.org/10.24154/jhs.v18i1.2170

Keywords:

Chlorophyll mutants, gamma radiation, mutation, okra, variability

Abstract

Okra [Abelmoschus esculentus (L.) Moench], is an economically exploited important traditional vegetable crop of the world. The present investigation examined the variability in induced chlorophyll mutants and other
morphological variations in okra. Seeds of two open pollinated popular varieties of okra namely Arka Anamika and Arka Abhay were irradiated with gamma doses of 30, 50 and 80 kR. The treatment 50 kR enhanced plant height, number of fruits per plant, fruit length, single fruit weight and total fruit yield per plant. Spectrum of several chlorophyll mutants were observed in the M1 generation. Other macro-mutants such as early and late flowering types, dwarf statured plants, leaf and flower mutants were also noticed at different doses of gamma radiation. The total number of visible mutation followed a trend of increasing frequency with the increase in dose of radiation.

References

Blixt, S. 1961. Quantitative studies of induced mutations in peas. V. Chlorophyll mutations. Agr. Hort. Genet., 19: 1-14.

Duncan, D.B. 1955. Multiple range and multiple F tests. Biometrics., 11(1): 1-42. DOI: https://doi.org/10.2307/3001478

Gaul, H. 1964. Mutations in plant breeding. Radiat. Bot., 4(3): 155-232. DOI: https://doi.org/10.1016/S0033-7560(64)80069-7

Gupta, N. and Sood, S. 2019. Induction of morphological mutations in okra (Abelmoschus esculentus L.) through gamma rays and EMS. Int. J. Pharmacol. Phytochem., 1: 74-76.

Gustafson, A. 1940. The mutation system of the chlorophyll apparatus. Lunda Guv. Asskr. M.F. Adv., 2(11): 1-40.

Hegazi, A. Z. and Hamideldin, N. 2010. The effect of gamma irradiation on enhancement of growth and seed yield of okra [Abelmoschus esculentus (L.) Monech] and associated molecular changes. J. Hort. and Forestry., 2(3): 38-51.

Jadhav, P. A., Kalpande, H. V., Kathale, M. N. and Dahale, G.P. 2012. Effect of gamma rays and ethyl methane sulphonate on germination, pollen viability and survival of okra [Abelmoschus esculentus (L.) Moench]. J. Crop and Weed., 8(2): 130-139.

Kolar, F., Pawar, N. and Dixit, G. 2011. Induced chlorophyll mutations in Delphinium malabaricum (Huth) Munz. J. Appl. Hortic., 13(1): 18-24. DOI: https://doi.org/10.37855/jah.2011.v13i01.04

Kozgar, M.I., Khan, S. and Wani, M.R. 2012. Variability and correlations studies for total iron and manganese contents of chickpea (Cicer arietinum L.) high yielding mutants. American. J. Food. Tech., 7: 437-444. DOI: https://doi.org/10.3923/ajft.2012.437.444

Kumar, A., Kumar, M.V., Sharma, R., Singh, M.K., Singh, B. and Chand, P. 2019. Character association and path coefficient analysis of yield and yield related traits in okra (Abelmoschus esculentus (L.) Moench). Prog. Agric., 19(1): 140-145. DOI: https://doi.org/10.5958/0976-4615.2019.00026.7

Mohite, A.V. and Gurav, R.V. 2019. Induced mutation using gamma rays in okra (Abelmoschus esculentus (L.) Moench). J. Applied Hortic., 21(3): 205-208. DOI: https://doi.org/10.37855/jah.2019.v21i03.35

Rouf, Md., Tasnim, S., Khan, N.A., Sarkar, M.J., Sumi, M.A., Eadun, K.M. and Nabi. 2022. Gamma irradiation effect on morphological character of M1 generation of okra. World J. Biol. Biotechnol., 1(7): 7-10. DOI: https://doi.org/10.33865/wjb.007.01.0463

Surendran, S. and Udayan, P.S. 2017. Gamma rays induced mutations on morphological and yield attributing characters in M2 generation of okra [Abelmoschus esculentus (L.) Moench] Int. J. Curr. Microbiol. App. Sci., 6(10): 3623-3628. DOI: https://doi.org/10.20546/ijcmas.2017.610.427

Warghat, A. R., Nandkishor, H., Rampure and Wagh, P. 2011. Effect of sodium azide and gamma rays treatments on percentage germination, survival, morphological variation and chlorophyll mutation in musk okra (Abelmoschus moschatus L.). Int. J. Pharmacy Pharmac. Sci., 3(5): 483-486.

You, F.M., Song, Q., Jia, G., Cheng, Y., Duguid, S., Booker, H. and Cloutier, S. 2016. Estimation of genetic parameters and their sampling variances for quantitative traits in the type 2 modified augmented design. Crop J., 4(2): 107-118. DOI: https://doi.org/10.1016/j.cj.2016.01.003

Downloads

Published

30-06-2023

Issue

Section

Research Notes

How to Cite

Sasipriya, S., Gangaprasad, S., Dushyantha Kumar, B. M., Nagarajappa, A., Basavaraj, H., & Harish Babu, B. N. (2023). Spectrum of chlorophyll mutations and morphological variations in Abelmoschus esculentus L. induced through gamma radiation. Journal of Horticultural Sciences, 18(1), 233-239. https://doi.org/10.24154/jhs.v18i1.2170

Similar Articles

1-10 of 118

You may also start an advanced similarity search for this article.