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ABSTRACT

A customized convolutional neural network (CNN) model is developed and fine-tuned for identifying tomato
leaf diseases. The model is optimized by adjusting hyperparameters, batch size, and CNN layers. It is tested
against mite infestation and ten diseases, including one bacterial, two viral, and seven fungal diseases. Compared
to other models, customized CNN based model performed well both in terms of accuracy and execution time.
Performance was analysed using loss-accuracy graphs and a confusion matrix. Evaluation metrics for test images
from the original dataset showed an average accuracy, precision, recall, and F1 score of 99.64 per cent, with
datasets for bacterial spot, leaf curl virus, leaf mould, Cercospora leaf spot, mosaic virus, and verticillium wilt
achieving 100 per cent in these metrics. Dataset for two-spotted mite infestations also showed 100 per cent
accuracy in recognising the damage. The execution time of custom CNN model on the tomato leaf disease
dataset averaged 1339.09 seconds after 25 epochs, 1356.91 seconds after 50 epochs, and 2696 seconds in
total for training across mite infestation and ten disease classes. The model accurately identified all 595, 896,
266, 56, 105, 575 diseased images of bacterial spot, leaf curl, leaf mould, Cercospora leaf spot, mosaic virus,
verticillium wilt and 1981 images of two-spotted mite infested leaves, as well as 448 healthy images. These
results demonstrate that the customized CNN model is highly effective and efficient in diagnosing mite infestation
and a variety of tomato leaf diseases, offering a reliable tool for disease management.
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INTRODUCTION

Tomato plants (Solanum lycopersicum) are susceptible
to a variety of diseases caused by fungi, bacteria,
viruses, and other pathogens, which can significantly
diminish both crop yield and quality (Sonika et al.,
2017). These diseases present substantial challenges
for farmers and pose a threat to global food security.
As leaves are key indicators of plant health, developing
a method to detect leaf diseases by analysing the
characteristics of spots on tomato leaves such as
shape, colour, and orientation is crucial for enhancing
agricultural nutrition programs (Shruthi et al., 2022).

Historically, image processing paired with data mining
techniques such as K-nearest neighbour (KNN),
backpropagation neural networks, support vector
machines (SVM), and spatial gray-level dependency
matrices have been employed to identify plant diseases
(Afifi et al., 2020; Choudhary & Hiranwal, 2021).
However, recent advances in artificial intelligence,
especially in deep learning, have ushered in new

capabilities for automating the detection and diagnosis
of plant diseases. Among these techniques,
Convolutional Neural Networks (CNNs) have become
a prominent method for classification and feature
extraction across various fields including natural
language processing, speech recognition, and computer
vision (Shoaib et al., 2023; Gulati et al., 2024). This
study focuses on the development and optimization of
a customized CNN model tailored for diagnosing
diseases in tomato leaves.

MATERIALS AND METHODS

Data acquisition

To ensure a robust and diverse dataset, we sourced
data from publicly accessible datasets such as Plant
Disease Expert and Plant Village, available on https:/
/www.kaggle.com/PlantVillage, alongside datasets
from agricultural universities’ websites and research
publications. This comprehensive dataset included
high-resolution images of both healthy and diseased
tomato plants, with an example shown in Fig. 1.
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Data pre-processing

All images were resized to a uniform dimension of
112 x 112 pixels to standardize the input for the deep
learning model. To facilitate model convergence and

avoid numerical instability, pixel values were
normalized to a scale ranging from 0 to 1. This
normalization ensures that all features contribute
equally during the learning process.

Tomato Healthy Tomato Bacterial     Tomato Early    Tomato late
leaf spot      blight     blight

Tomato leaf curl Tomato Leaf     Tomato Cercospora    Tomato Mosaic
virus mould       leaf spot    virus

Tomato target Tomato Septoria    Tomato Two   Tomato
spot leaf spot    spotted mite   Verticilium wilt

Fig. 1 : Diseased and healthy representative leaf images of tomato crop

Table 1 : Data augmentation techniques

Technique Value Purpose

Horizontal Flip It simulates the scenario of viewing the crop from different side
Vertical Flip It simulates the scenario of viewing the crop from different side
Rotate 45o 45o It helps the model to recognize diseases in images taken from

different orientation
Rotate 60o 60o It helps the model to recognize diseases in images taken from

different orientation
Scaling 1.2 It refers to zooming in or out of the image, which can be a useful

augmentation for improving the robustness of model
Shearing 0.2 It helps the model learn to recognize objects in images that are

distorted or regardless of their size.
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Data augmentation

To ensure model generalization, six sophisticated data
augmentation techniques were applied to the training
dataset, which included both diseased and healthy
tomato leaf images (Table 1). These techniques
significantly expanded the dataset to many times its
original size, helping to prevent overfitting. This
expansion resulted in a more robust and diverse
dataset, ultimately enhancing the performance of the
machine learning model. The disease data set
generation and working process of tomato disease
recognition is explained in Fig. 2.

Optimization technique

The adaptive moment estimation (Adam) optimizer
was utilized, which calculates adaptive learning rates
for each parameter. Adam enhances optimization by

using exponentially moving averages of the gradient
from the current minibatch to estimate the moments.
This approach has shown significant improvements
over traditional methods such as regular and stochastic
gradient descent.

Data annotation

Data annotation involves labelling the individual
elements within the training data to clarify their
content and significance. This process included the
addition of contextual information that machine
learning models utilize for learning. The annotated data
was subsequently used for training the model.

Data partition

All images were categorized by class numbers and
labels, distinguishing between healthy and diseased
states. These categories were then split into training

Fig. 2 : Flow chart for disease data set generation

Table 2 : Class labels and statistics of tomato leaf dataset

Class Class No. of No. of Training Testing Total
number original augmented images images images

images images

1 Healthy 318 1908 1778 448 2226

2 Bacterial spot 425 2550 2380 595 2975

3 Early blight 200 1200 1120 280 1400

4 Late blight 382 2100 1950 532 2482

5 Leaf curl virus 642 3852 3598 896 4494

6 Leaf mould 190 1140 1064 266 1330

7 Cercospora leaf spot 38 228 210 56 266

8 Mosaic virus 75 450 420 105 525

9 Target spot 281 1686 1575 392 1967

10 Septoria leaf spot 354 2124 1981 497 2478

11 Two spotted mite 1417 8502 7938 1981 9919

12 Verticilium wilt 773 2094 2294 575 2867

13 Total images 5095 27834 26306 6623 32929



and testing datasets (Table 2). All the images were
classified into class numbers and class labels (healthy
and disease) which were further divided into training
and test datasets (Table 2).

Model development

A custom convolutional neural network (CNN) was
developed by adjusting batch sizes, pre-processing
techniques, and the number of convolutional layers to
enhance its efficacy on both healthy and diseased
tomato leaf image datasets. Model 1 was developed
initially by keeping batch size value as 16, number of
epochs as 100 and number of convolutional layers as
3. In the second model (model 2), the batch size was
doubled (32) and epochs were reduced to half (50)
with no change in convolutional layers. To further
increase the efficiency, model 3 was tested with same
batch size and epochs as in model 2 but number of
convolutional layers was increased to 4 with minor
change in rotation, zoom, height and width. In model
5, one more convolutional layer was added. The
workflow for the tomato crop disease recognition
process is illustrated in Fig. 3.

Implementation

The proposed method was implemented using Python.
The adjustment of the learning rate for each epoch was
governed by the following equation:

Where α
n
, α

0
 and epoch(n) represent the learning rate

at nth epoch, initial learning rate, and the current epoch
number respectively.

Loss accuracy graphs

The loss graph in machine learning tracks the model’s
error; the discrepancy between the predicted and actual

values throughout the training process. This graph
helps to visualize the model’s performance, with the
objective of minimizing loss during training.
Conversely, the accuracy graph charts how the model’s
accuracy evolves over training sessions. Here, the
x-axis indicates the training epochs, while the y-axis
shows the accuracy levels achieved by the model.

Performance evaluation of classification algorithm

The performance of the classification algorithm was
evaluated using a Confusion Matrix, which provides
a detailed account of the model’s correct and incorrect
classifications across a specific dataset. To thoroughly
assess model performance, metrics such as accuracy,
precision, recall, and F1-score were computed.

 

 

Where TP
a
, TN

a
, FP

a
 and FN

a
 represent true positive,

true negative, false positive and false negative for class
‘a’. Similarly, P

a
, R

a
 F1

a
 and ACC represent precision,

recall, F1-score and accuracy for class ‘a’. Class ‘a’
represents dataset of particular disease or mite infested
images.

Correct identification was calculated from confusion
matrix of mite infested dataset and diseased dataset
of ten diseases by applying formula:

Fig. 3: Flow chart for working process of tomato crop disease recognition
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RESULTS AND DISCUSSION

Convolutional neural networks (CNNs) are one of the
most important algorithms for image classification
which does not need any manual feature extraction to
work and makes it robust against new datasets
(Lecun et al., 1998). To correctly train the CNN to
be able to classify images, many hyperparameters need
to be adjusted; these hyperparameters affect the
performance of the network along its time to
convergence. The techniques and hyperparameters
selected in developing CNN model are discussed.

Dataset statistics

The compilation of datasets for tomato crop diseases
revealed the original collection of 318 healthy leaf
images and 4,777 diseased leaf images spanning
several conditions including bacterial spot, early
blight, late blight, leaf curl virus, and others
(Table 2). From publicly available sources, these
datasets were expanded through data augmentation to
include 5,095 originals and 27,834 augmented images.
Image augmentation is usually used to increase the
image dataset and also to make the network more
robust against translation invariance. During present
study, six advanced data augmentation techniques;
horizontal flip, vertical flip, rotate 45o rotate 60o

scaling and shearing were applied to mite infested and
disease images of tomato leaves. CNN model generates
better results when they are trained using a larger
dataset (Saini & Seba, 2019), whereas, if the model
is trained on a smaller dataset with few training
samples, it may perform badly during validation and
testing as it memorizes irrelevant noise instead of

detecting significant discriminative features (Cagli
et al., 2017). Augmented data presents a more
comprehensive set of possible points which minimized
the distance between training, validation and test
samples (Shorten & Khoshgoftaar, 2019).
Experimental results of Mikołajczyk and Grochowski
(2018), and Poojary et al. (2021) also showed that
their models achieved better test accuracy when data
augmentation was employed.

Model development for tomato diseases

The initial custom CNN model utilized a batch size
of 16, yielding an accuracy of 0.58, precision of 0.65,
recall of 0.58, and F1 score of 0.57 (Table 3).
Adjusting the batch size to 32 improved these metrics
substantially, increasing all scores to 0.81 after
reducing the training epochs by half. Batch size and
number of epochs are another important
hyperparameters in the development of model. It was
interesting to note that in the initial model when the
batch size was 16, the accuracy of the model was
0.58 even after 100 epochs. When the batch size was
doubled, it significantly improves the accuracy to
0.81 after half the epochs (50). Batch size is the
number of images used to train a single forward and
backward pass. On one hand, a small batch size can
converge faster than a large batch, but a large batch
can reach optimum minima that a small batch size
cannot reach. Radiuk (2017) investigated the effect of
batch size on CNN performance for image
classification and concluded that the higher the batch
size the higher the network accuracy, meaning that the
batch size has a huge impact on the CNN
performance. However, many authors stated that a

Table 3 : Development and performance of custom CNN model for tomato diseases

Parameter Model 1 Model 2 Model 3 Model 4

Batch size 16 32 32 32

Epochs 100 50 50 50

Random rotation (0.2) (0.2) (0.3) (0.3)

Random zoom (0.2) (0.2) (0.3) (0.3)

Random height (0.2) (0.2) (0.3) (0.3)

Random width (0.2) (0.2) (0.3) (0.3)

Number of convolutional layers 3 3 4 5

Performance of CNN model

Accuracy 0.58 0.81 0.85 0.87

Precision 0.65 0.81 0.85 0.86

Recall 0.58 0.81 0.85 0.87

F1 Score 0.57 0.81 0.85 0.86

Optimized CNN for real-time tomato pest and disease detection



batch size of 32 is a good default value, which is more
robust and optimal to quicken the computation of the
network and help the network achieve the highest
accuracy in the shortest time (Bengio, 2012; Masters
& Luschi, 2018; Kandel & Castelli, 2020). These
results were in conformity with the present work.

A single pass over the complete training dataset
constitutes an epoch in deep learning. The model
uses backpropagation to update its parameters
throughout each epoch in order to lower the loss
function. Accuracy tends to increase with the number
of epochs, as the model continues to refine its
understanding of the training data. However, after a
certain point, increasing the number of epochs can lead
to overfitting, where the model becomes too focused
on the training data and performs poorly on new,
unseen data. Finding the ideal number of epochs that
strikes a balance between underfitting and overfitting
can be achieved by employing strategies like early
stopping (Vinayedula, 2023). In present case,
50 epochs gave better accuracy.

Further, enhancements were achieved by adding an
additional convolutional layer, leading to an accuracy,
precision, recall, and F1 score of 0.85 with
4 convolutional layers. This performance slightly
increased to an accuracy and F1 score of 0.87 with
five convolutional layers, alongside precision and
recall rates of 0.86 (Table 3). A convolutional layer
is the main building block of the CNN model, which
contains a set of kernels learned throughout the
training process. Comparative analysis shows that this
model outperformed similar CNNs reported in
previous studies by Foysal et al. (2020) and Sardogan
et al. (2018), which gave 76 and 86 percent accuracy.
This study approached the high benchmarks set by
Brahimi et al. (2017), which reported 94.53 percent
accuracy using CNN compared with shallow models
and handcrafted features and Abbas et al. (2021), who
achieved higher accuracies (97.11%) than the present
study model by utilizing CGAN algorithm with pre
trained DensNet121 model.

Performance evaluation

The custom CNN model’s evaluation on the tomato
disease dataset, which includes 11 distinct class labels,
was comprehensively assessed using various metrics
(Table 4), execution times (Table 5), loss-accuracy
graph (Fig. 5), and a confusion matrix (Fig. 5). True

and predicted results of diseased and healthy leaf
images are presented in Fig. 5.

Test images from the original dataset demonstrated
exemplary performance, with an average score of
99.64 per cent across accuracy, precision, recall, and
F1 score metrics, with several conditions achieving
perfect scores (Table 4).

The model’s performance of our model across mite
infestation and 10 disease classes was better (99.51%)
than the performance of the 2 (99.01%, Emebo et al.,
2019), 5 (96.6%, Widiyanto et al., 2019), 7 (97.49%,
Rangarajan et al., 2018), 9 (99.18%, Brahimi et al.,
2017; 97.28%, Zhang et al., 2018) and 10 (91.2%,
Agarwal et al., 2020; 99.12%, Afify et al., 2022) class
classification task.

Execution time

The training of the custom CNN model on the tomato
leaf disease dataset required 1,339.09 seconds for
25 epochs, 1,356.91 seconds for 50 epochs, and a total
of 2,696 seconds across all training phases (Table 5).
This efficiency compares favourably with more time-
intensive models like AlexNet (3360 s), VGG16
(3390 s) after 30 epochs, DenseNet (4280 s), and
ResNet (2420 s) after 20 epochs on the identification
of tomato leaf diseases (Bouni et al., 2023).

Loss and accuracy trends

Initially, the model exhibited its highest loss at epoch
zero, which progressively decreased with additional
epochs, indicating fewer prediction errors. The
accuracy graphs (Fig. 3) reflected a steady
improvement in the model’s ability to correctly identify
diseases as training progressed.

Confusion matrix analysis

The confusion matrix for the custom CNN model
demonstrated its capability to accurately identify all
instances of bacterial spot, leaf curl, leaf mould,
Cercospora leaf spot, mosaic virus, two-spotted mite,
verticillium wilt disease, and healthy tomato leaves
across 595, 896, 266, 56, 105, 1981, 575 diseased
images, and 448 healthy images respectively
(Fig. 5 a, d, e, f, g, j, k). The true and predicted results
are clearly presented in Fig. 5. For early blight, late
blight, target spot, and Septoria leaf spot-infested
leaves totalling 285, 532, 396, and 497 images; the
model achieved high accuracy rates, correctly
identifying 280 (98.24%), 526 (98.87%),

Gulati et al.



Fig. 4 : Loss-accuracy graph for Custom CNN model on disease dataset

Table 4 : Evaluation metrics for test images from the original dataset

Class Accuracy Precision Recall F1 Score Correct identification
(%) (%) (%) (%) (%)

Bacterial spot 100 100 100 100 100
Early blight 99 99 99 99 98.24
Late blight 99 99 99 99 98.87
Leaf curl virus 100 100 100 100 100
Leaf mold 100 100 100 100 100
Cercospora leaf spot 100 100 100 100 100
Mosaic virus 100 100 100 100 100
Target spot 99 99 99 99 98.73
Septoria leaf spot 99 99 99 99 98.79
Two spotted mite 100 100 100 100 100
Verticilium wilt 100 100 100 100 100
Average score 99.64 99.64 99.64 99.64 99.51

Table 5 : Execution time of custom CNN model on tomato disease leaf dataset

Class Total Size Execution time(s)
parameters (MB) After 25 epochs After 50 epochs Total

Bacterial spot 651842 2.49 1307 1355 2662
Early blight 651842 2.49 823 838 1661
Late blight 651842 2.49 1242 1303 2545
Leaf curl virus 651842 2.49 1884 2401 4285
Leaf mold 651842 2.49 1031 1002 2033
Cercospora leaf spot 651842 2.49 671 599 1270
Mosaic virus 651842 2.49 741 618 1359
Target spot 651842 2.49 1043 887 1930
Septoria leaf spot 651842 2.49 1306 1245 2551
Two spotted mite 651842 2.49 3267 3383 6650
Verticilium wilt 651842 2.49 1415 1295 2710
Average score 1339.09 1356.91 2696

Optimized CNN for real-time tomato pest and disease detection



Fig. 5 : True and predicted results of diseased and healthy leaf images
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a) Bacterial spot b) Early blight

c) Late blight d) Leaf curl virus

e) Leaf mold f) Cercospora leaf spot
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g) Mosaic virus h) Target spot

i) Septoria leaf spot j) Two spotted mite

k) Verticillium wilt

Fig. 6 : Confusion matrix between tomato disease and healthy image dataset in custom CNN model

391 (98.73%), and 496 (99.79%) images, respectively.
All healthy images were correctly identified in this
study. In contrast, Brahimi et al. (2017) reported
accuracy between 94.53 and 95.46 per cent of their
CNN model in recognising 14828 images of yellow
leaf curl virus, mosaic virus, target spot, spider mites,

leaf mold, septoria spot, late blight, early blight,
bacterial spot. Likewise, the model developed by
Abouelmagd et al. (2024) showed a high classification
rate for healthy images (99%) but lower accuracy for
the 10 diseased classes (62-98%), viz., two-spotted
spider mite, target spot, tomato mosaic virus, yellow

Gulati et al.



leaf curl virus, bacterial spot, early blight, late blight,
leaf mould, septoria leaf spot diseased images.

CONCLUSION

The custom CNN model is expected to provide high
accuracy and precision in distinguishing between
healthy tomato plants and those afflicted with various
diseases. Such reliable disease identification is crucial
for timely intervention and mitigation strategies. As a
continuous monitoring tool, this model enables the
early detection of disease signs in tomato crops,
facilitating proactive measures to prevent extensive
outbreaks and reduce crop losses. This capability
underscores the model’s value in agricultural
management and disease control.
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